Skip to main content
Log in

Representation of type I heterostructure junctionless tunnel field effect transistor for high-performance logic application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, a gate-all-around junctionless tunnel field effect transistor (JLTFET) based on heterostructure of compound and group III–V semiconductors is introduced and simulated. In order to blend the high tunneling efficiency of narrow band gap material JLTFETs and the high electron mobility of III–V JLTFETs, a type I heterostructure junctionless TFET adopting Ge–Al x Ga1−x As–Ge system has been optimized by numerical simulation in terms of aluminum (Al) composition. To improve device performance, we considered a nanowire structure, and it was illustrated that high-performance logic technology can be achieved by the proposed device. The optimal Al composition founded to be around 20 % (x = 0.2). The numerical simulation results demonstrate that the proposed device has low leakage current I OFF of ~1.9 × 10−17, I ON of 4 µA/µm, I ON/I OFF current ratio of 1.7 × 1011 and subthreshold swing SS of 12.6 mV/decade at the 40 nm gate length and temperature of 300 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Anwar, I. Hossain, A comparative numerical simulation of a nanoscaled body on insulator FinFET, in Proceedings of the 27th International Conference on Microelectronics (MIEL) (2010), pp. 16–19

  2. R. Coquand et al. Strain-induced performance enhancement of tri-gate and omega-gate nanowire fets scaled down to 10 nm width, in IEEE Symposium on VLSI Technology Digest of Technical Papers (2012), pp. 13–14

  3. J.Y. Song et al., Design optimization of gate-all-around (GAA) MOSFETs. IEEE Trans. Nanotechnol. 5(3), 186–191 (2006)

    Article  ADS  Google Scholar 

  4. J.-P. Colinge, C.-W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, R. Murphy, Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)

    Article  ADS  Google Scholar 

  5. C.-W. Lee, I. Ferain, A. Afzalian, R. Yan, N.D. Akhavan, P. Razavi, J.P. Colinge, Performance estimation of junctionless multigate transistors. Solid State Electron. 54(2), 97–103 (2010)

    Article  ADS  Google Scholar 

  6. W.Y. Choi, B.-G. Park, J.D. Lee, T.-J. King Liu, Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Dev. Lett. 28, 743–745 (2007)

    Article  ADS  Google Scholar 

  7. Qin Zhang, Wei Zhao, Alan Seabaugh, Low-subthreshold-swing tunnel transistors. IEEE Electron Dev. Lett. 27, 297–300 (2006)

    Article  ADS  Google Scholar 

  8. O.M. Nayfeh, C.N. Chleirigh, J. Hennessy, L. Gomez, J.L. Hoyt, D.A. Antoniadis, Design of tunneling field-effect transistors using strained-silicon/strained-germanium type-II staggered heterojunctions. IEEE Electron Dev. Lett. 29, 1074–1077 (2008)

    Article  ADS  Google Scholar 

  9. Y. Khatami, K. Banerjee, Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Electron Dev. Lett. 56, 2752–2761 (2009)

    Article  Google Scholar 

  10. U. E. Avci, I. A. Young, Heterojunction TFET scaling and resonant-TFET for steep subthreshold slope at sub-9 nm gate-length, in Proceedings of the IEEE International Electron Device Meeting (IEDM), Washington, DC, USA (2013), pp. 4.3.1–4.3.4

  11. M. Luisier, G. Klimeck, Performance comparisons of tunneling field-effect transistors made of InSb, Carbon, and GaSb–InAs broken gap heterostructures, in Proceedings of the IEEE International Electron Device Meeting (IEDM), Baltimore, MD, USA (2009), pp. 1–4

  12. A.C. Seabaugh, Q. Zhang, Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010)

    Article  Google Scholar 

  13. L. Knoll et al., Inverters with strained Si nanowire complementary tunnel field-effect transistors. IEEE Electron Dev. Lett. 34(6), 813–815 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. K. Ganapathi, Y. Yoon, S. Salahuddin, Analysis of InAs vertical and lateral band-to-band tunneling transistors: leveraging vertical tunneling for improved performance. Appl. Phys. Lett. 97, 033504 (2010)

    Article  ADS  Google Scholar 

  15. A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energyefficient electronic switches. Nature 479(7373), 329–337 (2011)

    Article  ADS  Google Scholar 

  16. B. Ghosh, M.W. Akram, Junctionless tunnel field effect transistor. IEEE Electron Dev. Lett. 35(5), 584–586 (2013)

    Article  ADS  Google Scholar 

  17. P.K. Asthana, B. Ghosh, S.B. Rahi et al., Improved performance of junctionless tunnel filed effect transistor with Si and SiGe hetro-structure for ultra low power application. RSC Adv. (2015). doi:10.1039/C5RA03301B

    Google Scholar 

  18. P.K. Asthana, High performance 20 nm GaSb/InAs junctionless fiels effect transistor for low power supply. J. Semicond. 36(2), 1–6 (2015)

    Article  Google Scholar 

  19. B. Ghosh, P. Bal, P. Mondal, A junctionless tunnel field effect transistor with low subthreshold slope. J. Comput. Electron. (2013). doi:10.1007/s10825-013-0450-2

    Google Scholar 

  20. Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  21. R. Eisberg, R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, 2nd edn. (Wiley Student Edition, New York, 2012)

    Google Scholar 

  22. W. Long, H. Ou, J.M. Kuo et al., Dual-material gate (DMG) field effect transistor. IEEE Trans. Electron. Dev. 46(5), 865 (1999)

    Article  ADS  Google Scholar 

  23. K.Y. Na, Y.S. Kim, Silicon complementary metal–oxide–semiconductor field-effect transistors with dual work function gate. Jpn. J. Appl. Phys. 45(12), 9033 (2006)

    Article  ADS  Google Scholar 

  24. C.H. Wang, H. Chu, Y.S. Lai, et al., Dual work-function metal gates. US Patent, No. 73 81619B2, Jun. 3, 2008

  25. U. Konig et al., N- and p-type Si–SiGe hetero FETs, in IEEE International Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications, vol. 8 (2000), pp. 1–7

  26. B.M. Borg, K.A. Dick, B. Ganjipou et al., InAs/GaSb heterostructure nanowires for tunnel field-effect transistors. Nano Lett. 10(10), 4080 (2010)

    Article  ADS  Google Scholar 

  27. K. Boucart, A.M. Ionescu, Double-gate tunnel FET with high-κ gate dielectric. IEEE Trans. Electron Dev. 54(7), 1725–1733 (2007)

    Article  ADS  Google Scholar 

  28. Silvaco, Version 5.15.32.R. (2009). http://www.silvaco.com

  29. K. Boucart, A.M. Ionescu, Double-gate tunnel FET with High-κ gate dielectric. IEEE Trans. Electron Dev. 54(7), 1725–1733 (2007)

    Article  ADS  Google Scholar 

  30. A. Villalon et al., First demonstration of strained SiGe nanowires TFETs with ION beyond 700 μA/μm, in Proceedings Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA (2014), pp. 66–67

  31. W. Hansch, T. Vogelsang, R. Kirchner, M. Orlowski, Carrier transport near the Si/SiO2 interface of a MOSFET. Solid State Electron. 32(10), 839–849 (1989)

    Article  ADS  Google Scholar 

  32. A. Schenk, A model for the field and temperature dependence of SRH lifetimes in silicon. Solid State Electron. 35(11), 1585–1596 (1992)

    Article  ADS  Google Scholar 

  33. C. Wang, S.Y. Chou, Self-aligned fabrication of 10 nm wide asymmetric trenches for Si/SiGe heterojunction tunneling field effect transistors using nanoimprint lithography, shadow evaporation, and etching. J. Vac. Sci. Technol. B 27(6), 2790–2794 (2009)

    Article  Google Scholar 

  34. O.M. Nayfeh, C.N. Chleirigh, J. Hennessy, L. Gomez, J.L. Hoyt, D.A. Antoniadis, Design of tunneling field-effect transistors using strained-silicon/strained-germanium type-II staggered heterojunctions. IEEE Electron Dev. Lett. 29(9), 1074–1077 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ali Sedigh Ziabari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molaei Imen Abadi, R., Sedigh Ziabari, S.A. Representation of type I heterostructure junctionless tunnel field effect transistor for high-performance logic application. Appl. Phys. A 122, 616 (2016). https://doi.org/10.1007/s00339-016-0151-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0151-3

Keywords

Navigation