Skip to main content
Log in

A laboratory study of supercritical CO2 adsorption on cap rocks in the geological storage conditions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present study, various cap rocks have been experimentally reacted in water with supercritical CO2 in geological storage conditions (P = 8 × 106 Pa and T = 80 °C) for 25 days. To characterize the potential CO2–water–rock interactions, an experimental setup has been built to provide additional information concerning the effects of structure, thermal and surface characteristics changes due to CO2 injection with cap rocks. In addition, CO2 adsorption capacities of different materials (i.e., clay evaporate and sandstone) are measured. These samples were characterized by XRD technique. The BET specific surface area was determined by nitrogen isotherms. In addition, thermal characteristics of untreated adsorbents were analyzed via TGA method and topography surfaces are identified by Scanning Electron Microscope (SEM). Taking into account pressure and temperature, the physical as well as chemical mechanisms of CO2 retention were determined. Isotherm change profiles of samples for relative pressure range indicate clearly that CO2 was adsorbed in different quantities. In accordance with the X-ray diffraction, a crystalline phase was formed due to the carbonic acid attack and precipitation of some carbonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Soares, Warming Power of CO2 and H2O: Correlations with Temperature Changes, Int. J. Geosci. 1, 102–112 (2010)

    Article  Google Scholar 

  2. P. Jean-Baptiste, R. Ducroux, Potentiel des méthodes de séparation et stockage du CO2 dans la lutte contre l’effet de serre, C. R. Geosci. 335, 611–625 (2003)

    Article  Google Scholar 

  3. R. Qi, T, C. L, Martin, J. Blunt. Design of carbon dioxide storage in aquifers, Int. J. Greenh. Gas Control 3, 195–205(2009)

    Article  Google Scholar 

  4. N. Kampman, M. Bickle, M. Wigley, B. Dubacq, Fluid flow and CO2–fluid–mineral interactions during CO2-storage in sedimentary basins. Chem. Geol. 369, 22–50 (2014)

    Article  Google Scholar 

  5. S. Bachu, Sequestration of CO2 in geological media in response to climate change:road map for site selection using the transform of the geological space into the CO2 phase space, Energy Convers. Manage. 43, 87–102 (2002)

    Article  Google Scholar 

  6. I. Gaus, Role and impact of CO2–rock interactions during CO2 storage in sedimentary rocks. Int. J. Greenh. Gas Control 4, 73–89 (2010)

    Article  Google Scholar 

  7. F. Guyot, D. Daval, S. Dupraz, I. Martinez, B. Ménez, O. Sissmann, CO2 geological storage: The environmental mineralogy perspective, C. R. Geosci. 343, 246–259 (2011)

    Article  Google Scholar 

  8. D.F. Zhao, X.W. Liao, D.D. Yin, An experimental study for the effect of CO2–brine–rock interaction on reservoir physical properties. J. Energy Inst. 88, 27–35 (2015)

    Article  Google Scholar 

  9. M. Wdowin, R. Tarkowski, W. Franus, Determination of changes in the reservoir and cap rocks of the Chabowo Anticline caused by CO2–brine–rock interactions. Int. J. Coal Geol. 130, 79–88 (2014)

    Article  Google Scholar 

  10. A. Olabode, M. Radonjic, Experimental investigations of caprock Integrity in CO2 sequestration, Energy Procedia 37, 5014–5025 (2013)

    Article  Google Scholar 

  11. E. Galán, P. Aparicio, Experimental study on the role of clays as sealing materials in the geological storage of carbon dioxide. Appl. Clay Sci. 87, 22–27 (2014)

    Article  Google Scholar 

  12. T. Wang, H. Wang, F. Zhang, T. Xu, Simulation of CO2–water–rock interactions on geologic CO2 sequestration under geological conditions of China. Mar. Pollut. Bull. 76, 307–314 (2013)

    Article  Google Scholar 

  13. P. Jeon, J. Choi, T. Yun, C. Lee, Sorption equilibrium and kinetics of CO2 on clay minerals from subcritical to supercritical conditions: CO2 sequestration at nanoscale interfaces. Chem. Eng. J. 255, 705–715 (2014)

    Article  Google Scholar 

  14. Y. Soong, B H. Howard, S W. Hedges, I. Haljasmaa, R P. Warzinski, G. Irdi, T R. McLendon, CO2 sequestration in saline formation. Aerosol. Air Qual. Res. 14, 522–532 (2014)

    Google Scholar 

  15. K. Wang, T. Xu, F. Wang, H. Tian, Experimental study of CO2–brine–rock interaction during CO2 sequestration in deep coal seams. Int. J. Coal Geol. 154–155, 265–274 (2016)

    Article  Google Scholar 

  16. S. Kamel, Application of selected geothermometers to Continental Intercalaire thermal water in southern Tunisia, Geothermics 41, 63–73 (2012)

    Google Scholar 

  17. S. Storck, H. Bretinger, W. Maier, Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis, Appl. Catal. A General 174,137–146 (1998)

    Google Scholar 

  18. S. Lee, S. Park, Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. J. Colloid Interface Sci. 389, 230–235 (2013)

    Article  Google Scholar 

  19. A. Heidari, H. Younesi, A. Rashidi, A. Ghoreyshi. Adsorptive removal of CO2 on highly microporous activated carbons prepared from Eucalyptus camaldulensis wood: Effect of chemical activation, J. Taiwan Instit. Chem. Eng. 45, 579–588 (2014)

    Google Scholar 

  20. R. Xun, M. Jia, F. Li, H. Wang, B. Zhang, J. Qiao, Appl. Phys. A 106, 747–755 (2012)

    Article  ADS  Google Scholar 

  21. F. Kooli, Y. Liu, R. Al-Faze, A. Suhaimi, Effect of acid activation of Saudi local clay mineral on removal properties of basic blue 41 from an aqueous solution, Appl. Clay Sci. 116–117, 23–30 (2015)

    Google Scholar 

  22. H. Lu, X. Yang, G. Gao, K. Wang, Q. Shi, J. Wang, C. Han, J. Liu, M. Tong, X. Liang, C. Li, Mesoporous zirconia-modified clays supported nickel catalysts for CO and CO2 methanation, Int. J. Hydrogen Energy 39, 18894–18907 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedi Jedli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jedli, H., Jbara, A., Hedfi, H. et al. A laboratory study of supercritical CO2 adsorption on cap rocks in the geological storage conditions. Appl. Phys. A 123, 254 (2017). https://doi.org/10.1007/s00339-017-0862-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0862-0

Keywords

Navigation