Skip to main content
Log in

Comparative studies on the properties of magnetron sputtered transparent conductive oxide thin films for the application in solar cell

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Transparent conductive ZnO:Al and ZnO:Ga ultrathin films have been developed on glass substrate at room temperature by non-reactive RF magnetron sputtering using sintered ceramic disc of ZnO:Al target (ZnO 98%, Al 2%), and ZnO:Ga target (ZnO 97%, Ga 3%). The thin films (90–250 nm) of ZnO:Al and ZnO:Ga show low resistivity of 8.6 × 10−5 and 4.5 × 10− 4 Ω cm, respectively. The ZnO:Al thin film exhibits highest transparency of 92%, haze factor of 54% in the visible region and electrical mobility of 12 cm2/V s. Similar kinds of results (highest electrical mobility is 10 cm2/V s, haze factor varies from 28 to 44%) are observed for ZnO:Ga thin films. The moderate improvement on thickness-dependent electrical mobility for very thin ZnO:Ga and ZnO:Al films are due to improved crystallinity, increased crystallite sizes but negative effect comes from grain boundary scattering and higher surface roughness. X-ray diffraction spectra reveal polycrystalline nature of ZnO:Ga and ZnO:Al thin films with grain size 22 and 19 nm, respectively. Variation of thickness and composition-dependent structural, morphological and optical haze properties of Al- and Ga-doped ZnO thin films have been compared with that of conventional ITO and SnO2:F thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Das, K. Adhikary, S. Ray, Comparison of electrical, optical and structural properties of RF-sputtering ZnO thin film deposited under different gas ambient. Jpn. J. Appl. Phys. 47(3), 1501–1506 (2008)

    Article  ADS  Google Scholar 

  2. A.S. Riad, S.A. Mahmoud, A.A. Ibrahim, Structural and DC electrical investigations of ZnO thin films prepared by spray pyrolysis technique. Phys. B Phys. Condens. Matter. 296(4), 319–325 (2001)

    Article  ADS  Google Scholar 

  3. S. Tüzemen, G. Xiong, B. Mischuck, K.B. Ucer, R.T. Williams, Production and properties of p–n junctions in reactively sputtered ZnO. Physica B 308–310, 1197–1200 (2001) (1198)

    Article  ADS  Google Scholar 

  4. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, A.M. Reshchikov, S. Doan, V. Avrutin, J.S. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 041301 (2005)

    Article  ADS  Google Scholar 

  5. R. Das, K. Adhikary, S. Ray, The role of oxygen and hydrogen partial pressures on structural and optical properties of ITO films deposited by reactive RF-magnetron sputtering. Appl. Surf. Sci. 253(14), 6068–6073 (2007)

    Article  ADS  Google Scholar 

  6. Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Mater. 16(25), R829–R858 (2004)

    Article  ADS  Google Scholar 

  7. J. Müller, B. Rech, J. Springer, M. Vanecek, TCO and light trapping in silicon thin film solar cells. Sol. Energy 77, 917–930 (2004)

    Article  ADS  Google Scholar 

  8. W.J. Jeong, S.K. Kim, G.C. Park, Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell. Thin Solid Films 506–507, 180–183 (2006)

    Article  ADS  Google Scholar 

  9. M.C. Jeong, B.Y. Oh, O.H. Nam, T. Kim, J.M. Myoung, Three-dimensional ZnO hybrid nanostructures for oxygen sensing application. Nanotechnology 17(2), 526–530 (2006)

    Article  ADS  Google Scholar 

  10. R. Das, H.S. Das, Merits and demerits of transparent conducting magnetron sputtered ZnO:Al, ITO and SnO2:F thin films for solar cell applications. J. Inst. Eng. (India) Ser. D 98(1), 85–90 (2017)

    Article  Google Scholar 

  11. Y.R. Ryu, J.A. Lubguban, T.S. Lee, H.W. White, Y.S. Park, C.J. Youn, Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. J. Appl. Phys. Lett. 88(25), 241108 (2006)

    Article  ADS  Google Scholar 

  12. P.F. Carcia, R.S. McLean, M.H. Reilly, G. Nunes Jr., Transparent ZnO thin-film transistor fabricated by RF magnetron sputtering. Appl. Phys. Lett. 82(7), 1117 (2003)

    Article  ADS  Google Scholar 

  13. Z.L. Wang, J. Song, Piezoelectric-nanogenerators based on zinc oxide nanowire arrays. Science 312 (5771), 242–246 (2006)

    Article  ADS  Google Scholar 

  14. R.N. Chauhan, C. Singh, R. Singh, A.J. Kumar, Thickness-dependent structural, optical, and electrical characteristics of ZnO:Al thin films and application in OLEDs. IEEE Trans. Electron Dev. 61 (11), 3775–3782 (2014)

    Article  ADS  Google Scholar 

  15. Y. Aoun, B. Benhaoua, B. Gasmi, S. Benramache, Structural, optical and electrical properties of zinc oxide thin films deposited by a spray pyrolysis technique. J. Semicond. 36(1), 013002 (2015)

    Article  ADS  Google Scholar 

  16. M. Novotný, J. Cizek, R.Kužel,J. Bulíř, J. Lančok, J. Connolly, E. McCarthy, S. Krishnamurthy, J.-P. Mosnier, W. Anwand, G. Brauer, Structural characterization of ZnO thin films grown on various substrates by pulsed laser deposition. J. Phys. D Appl. Phys. 45(22), 225101 (2012)

    Article  ADS  Google Scholar 

  17. D.C. Agarwal, R.S. Chauhan, Synthesis and characterization of ZnO thin film grown by electron beam evaporation. J. Appl. Phys. 99, 123105 (2006)

    Article  ADS  Google Scholar 

  18. D. Nakamura, K. OkazakiI., A. Palani, M. Higashihata, T. Okada, Influence of Sb on a controlled-growth of aligned ZnO nanowires in nanoparticle-assisted pulsed-laser deposition. Appl. Phys. A. 103(4), 959–963 (2011)

    Article  ADS  Google Scholar 

  19. R. Das, H.S. Das, Effect of hydrogen on the properties of RF-magnetron sputtering ZnO:Al films as an alternative to commercially available TCO films. J. Inst. Eng. (India) Ser. D 98(2), 203–210 (2017)

    Article  Google Scholar 

  20. W. Gao, Z. Li, ZnO thin films produced by magnetron sputtering. Ceram. Int. 30(7), 1155–1159 (2004) Issue.

    Article  Google Scholar 

  21. R. Das, S. Ray, Zinc oxide—a transparent, conducting IR-reflector prepared by RF-magnetron sputtering. J Phys. D Appl. Phys. 32(2), 152–155 (2003)

    Article  ADS  Google Scholar 

  22. H.W. Wu, C.H. Chu, Y.F. Chen, Y.W. Chen, W.H. Tsai, S.H. Huang, G.S. Chen, Study of AZO thin films under different Ar flow and sputtering power by RF magnetron sputtering-011. Proceedings of the International Multi Conference of Engineers and Computer Scientists 2013, Vol II, IMECS 2013 (2013)

  23. E.G. Fua, D.M. Zhuanga, G. Zhanga, Z. Minga, W.F. Yangc, J.J. Liua, Properties of transparent conductive ZnO:Al thin films prepared by magnetron sputtering. Microelectron. J. 35(4), 383–387 (2004)

    Article  Google Scholar 

  24. H. Agura, A. Suzuki, T. Mastushita, T. Aoki, M. Okuda, Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition. Thin Solid Films 445(2), 263–267 (2003)

    Article  ADS  Google Scholar 

  25. B.Z. Dong, G.J. Fang, J.F. Wang, W.J. Guan, X.Z. Zhao, Effect of thickness on structural, electrical, and optical properties of ZnO: Al films deposited by pulsed laser deposition. J.Appl. Phy. 101(3), 033713 (2007)

    Article  ADS  Google Scholar 

  26. S.O. El hamali, W.M. Cranton, N. Kalfagiannis, X. Hou, R. Ranson, D.C. Koutsogeorgis, Enhanced electrical and optical properties of room temperature deposited aluminium doped zinc oxide (AZO) thin films by excimer laser annealing. Opt. Lasers Eng. 80, 45–51 (2016)

    Article  Google Scholar 

  27. N. Akin, S.S. Cetin, M. Cakmak, T. Memmedli, S. Ozcelik, Effect of film thickness on properties of aluminum doped zinc oxide thin films deposition on polymer substrate. J. Mater. Sci. Mater. Electron. 24, 5091–5096 (2013)

    Article  Google Scholar 

  28. A. Suzuki, T. Matsushita, N. Wada, Y. Sakamoto, M. Okuda, Transparent conducting Al-doped ZnO thin films prepared by pulsed laser deposition. Jpn. J. Appl. Phys. 35(Part 2, No. 1A), L56–L59 (1996)

    Article  ADS  Google Scholar 

  29. H.S. Das, A. Dey, P.P. Ray, R. Das, Room temperature deposited transparent conducting in ZnO:Ga thin films by non-reactive RF-magnetron sputtering. Mater. Today Proc. 4(14), 12610–12614 (2017)

    Article  Google Scholar 

  30. X. Yu, J. Ma, F. Ji, Y. Wang, C. Cheng, H. Ma, Thickness dependence of properties of ZnO:Ga ilms deposited by rf magnetron sputtering. Appl. Surf. Sci. 245, 310–315 (2005)

    Article  ADS  Google Scholar 

  31. D.H. Kim, H.R. Kim, S.H. Lee, E. Byon, G.H. Lee, Electrical and structural properties of multi component transparent conducting oxide films prepared by co sputtering of AZO and ITO. J. Non Cryst. Solids 356(35–36), 1779–1783 (2010)

    Article  ADS  Google Scholar 

  32. R. Groenen, J. Loffler, J.L. Linden, R.E.I. Schropp, M.C.M. van de Sanden, Property control of expanding thermal plasma deposited textured zinc oxide with focus on thin film solar cell applications. Thin Solid Films 492 (1–2), 298–306 (2005)

    Article  ADS  Google Scholar 

  33. H. Kim, J.S. Horwitz, G. Kushto, A. Piqué, Z.H. Kafafi, C.M. Gilmore, D.B. Chrisey, Effect of film thickness on the properties of indium tin oxide thin films. J. Appl. Phys. 88, 6021 (2000)

    Article  ADS  Google Scholar 

  34. J.K. Kim, S.J. Yun, J.M. Lee, J.W. Lim, Effect of RF-power density on the resistivity of Ga-doped ZnO film deposited by RF-magnetron sputter deposition technique. Curr. Appl. Phys. 10(3), S451–S454 (2010)

    Article  Google Scholar 

  35. Q. Li, X. Li, J. Zhang, Microstructure, optical and electrical properties of gallium-doped ZnO films prepared by sol gel method. J. Alloys Compd. 572, 175–179 (2013)

    Article  Google Scholar 

  36. F. Wu, L. Fang, Y.J. Pan, K. Zhou, H.B. Ruan, G.B. Liu, C.Y. Kong, Effect of annealing treatment on structural, electrical, and optical properties of Ga doped ZnO thin films deposited by RF magnetron sputtering. Thin Solid Films 520, 703–707 (2011)

    Article  ADS  Google Scholar 

  37. S. Blackwell, R. Smith, S.D. Kenny, J.M. Walls, C.F. Sanz, Navarro-modelling the growth of ZnO thin films by PVD methods and the effects of post-annealing. J. Phys. Condens. Matter. 25(13), 135002 (2013)

    Article  ADS  Google Scholar 

  38. G. Haacke, Transparent electrode properties of cadmium stannate. Appl. Phys. Lett. 28(10), 622 (1976)

    Article  ADS  Google Scholar 

  39. H. Mahdhi, Z. Ben Ayadi, S. Alaya, J.L. Gauffier, K. Djessas, The effects of dopant concentration and deposition temperature on the structural, optical and electrical properties of Ga-doped ZnO thin films. Superlattices Microstruct. 72, 60–71 (2014)

    Article  ADS  Google Scholar 

  40. G.A. Hirata, J. McKittrick, T. Cheeks, J.M. Siqueiros, J.A. Diaz, O. Contreras, O.A. Lopez, Synthesis and optoelectronic characterization of gallium doped zinc oxide transparent electrodes. Thin Solid Films 288(1–2), 29–31 (1996)

    Article  ADS  Google Scholar 

  41. J. Rodríguez-Báez, A. Maldonado, G. Torres-Delgado, R. Castanedo-Pérez, M.L. de la Olvera, Influence of the molar concentration and substrate temperature on fluorine-doped zinc oxide thin films chemically sprayed. Mater. Lett. 60(3), 1594–1598 (2006)

    Article  Google Scholar 

  42. F. Wang, H. Chang, C. Tseng, C. Huang, H. Liu, Influence of hydrogen plasma treatment on Al-doped ZnO thin films for amorphous silicon thin film solar cells. Curr. Appl. Phys. 11(1), S12–S16 (2011)

    Article  ADS  Google Scholar 

  43. M. Suchea, S. Christoulakis, N. Katsarakis, T. Kitsopoulos, G. Kiriakidis, Comparative study of zinc oxide and aluminum doped zinc oxide transparent thin films grown by direct current magnetron sputtering. Thin Solid Films 515, 6562–6566 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Department of Science and Technology, Govt. of India [DST/TM/ SERI/2K10/67(G)] for financial support for pursuing the R&D activity. S. Biring acknowledges financial supports from Ministry of Science and Technology, Taiwan (MOST 105-2218-E-131-003, 106-2221-E-131-027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R., Das, H.S., Nandi, P.K. et al. Comparative studies on the properties of magnetron sputtered transparent conductive oxide thin films for the application in solar cell. Appl. Phys. A 124, 631 (2018). https://doi.org/10.1007/s00339-018-2043-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2043-1

Navigation