Skip to main content
Log in

The effect of neutron radiation on the yield stress of the Bushehr reactor clad

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In fission reactors, neutron radiation is the main reason for the displacement of atoms in the crystalline lattice of the material. In this study, this damage is investigated on the fuel clad of the Bushehr reactor, which is Zr + 1%Nb. The MCNPX code is used to simulate the core of the reactor and find the highest neutron flux in the core of the reactor. Both the SRIM and SPECTER codes are used to study the neutron interaction with matter. The damage rate of the SRIM code is calculated in full cascade and quick damage modes, calculated as 2.05E−06 (dpa/s) and 1.06E−06 (dpa/s), respectively. Also, the damage rate in the SPECTER code is 1.0193E−06 (dpa/s), and the result has been compared with the SRIM code results. Using the calculated displacement per atom (dpa), the yield stress of the material, which is the resistance to the stresses, and the electrical resistivity of the material are calculated for 3 years of reactor operation. Both factors have increased over time, and the fuel clad lost its original function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. J. Zinkle, N. Hashimoto, Y. Matsukawa, R. E. Stoller, Y. N. Osetsky, MRS Online Proceedings Library Archive. 792, (2003)

  2. G. Lucas, J. Nucl. Mater. 206, 287–305 (1993)

    Article  ADS  Google Scholar 

  3. V.I. Levitas, A.M. Roy, D.L. Preston, Phys. Rev. B 88, 054113 (2013)

    Article  ADS  Google Scholar 

  4. V.I. Levitas, A.M. Roy, Phys. Rev. B 91, 174109 (2015)

    Article  ADS  Google Scholar 

  5. V.I. Levitas, A.M. Roy, Acta Mater. 105, 244–257 (2016)

    Article  Google Scholar 

  6. P. Mukherjee, P. Barat, S. Bandyopadhyay, N. Gayathri, M. Bhattacharya, Role of accelerators in studying radiation damage in nuclear structural materials (IAEA, Kolkata, 2009)

    Google Scholar 

  7. A. Holmes-Siedle, L. Adams, Handbook of radiation effects (IAEA, New York, 1993)

    Google Scholar 

  8. A.Y. Konobeyev, U. Fischer, Y.A. Korovin, S. Simakov, Nucet. 3, 169–175 (2017)

    Article  Google Scholar 

  9. D. Saad, H. Benkharfia, M. Izerrouken, A.A. Benyahia, H. Ait-Abderrahim, Nucl Sci Tech. 28, 162 (2017)

    Article  Google Scholar 

  10. G.S. Was, Fundamentals of radiation materials science: metals and alloys (Springer, Berlin, 2016)

    Google Scholar 

  11. R.C. Ewing, A. Meldrum, L. Wang, W.J. Weber, L.R. Corrales, Rev Miner. Geochem. 53, 387–425 (2003)

    Article  Google Scholar 

  12. S.F.G. Ardekani, K. Hadad, Prog. Nucl. Energ. 99, 96–102 (2017)

    Article  Google Scholar 

  13. K. Nordlund, A.E. Sand, F. Granberg, S.J. Zinkle, R. Stoller, R.S. Averback, T. Suzudo, L. Malerba, F. Banhart, W.J. Weber, F. Willaime, Primary Radiation Damage in Materials. Review of Current Understanding and Proposed New Standard Displacement Damage Model to Incorporate in Cascade Defect Production Efficiency and Mixing Effects (Organisation for Economic Co-Operation and Development, Paris, 2015)

    Google Scholar 

  14. S.I. Choi, J.H. Kim, NET. 45, 385–392 (2013)

    Article  Google Scholar 

  15. G. Carpenter, R. Zee, A. Rogerson, J. Nucl. Mater. 159, 86–100 (1988)

    Article  ADS  Google Scholar 

  16. G. Carpenter, R. Murgatroyd, A. Rogerson, J. Watters, J. Nucl. Mater. 101, 28–37 (1981)

    Article  ADS  Google Scholar 

  17. A. Rogerson, J. Nucl. Mater. 159, 43–61 (1988)

    Article  ADS  Google Scholar 

  18. R.B. Adamson, Irradiation Growth of Zircaloy, Zirconium in the Nuclear Industry (ASTM International, West Conshohocken, 1977)

    Google Scholar 

  19. R. Murgatroyd, A. Rogerson, J. Nucl. Mater. 79, 302–311 (1979)

    Article  ADS  Google Scholar 

  20. A. Rogerson, R. Murgatroyd, J. Nucl. Mater. 80, 253–259 (1979)

    Article  ADS  Google Scholar 

  21. R. Agarwala, M. Anand, B. Pande, Defect and Diffusion. Forum. 48, 29–56 (1987)

    Google Scholar 

  22. W. Bell, J. Nucl. Mater. 55, 14–22 (1975)

    Article  ADS  Google Scholar 

  23. R. Gilbert, K. Farrell, C. Coleman, J. Nucl. Mater. 84, 137–148 (1979)

    Article  ADS  Google Scholar 

  24. D. Northwood et al., J. Nucl. Mater. 79, 379–394 (1979)

    Article  ADS  Google Scholar 

  25. M. Griffiths, J. Nucl. Mater. 159, 190–218 (1988)

    Article  ADS  Google Scholar 

  26. C. Yan, R. Wang, Y. Wang, X. Wang, G. Bai, NET. 47, 323–331 (2015)

    Article  Google Scholar 

  27. A. Adrych-Brunning, M. Gilbert, J.-C. Sublet, A. Harte, C. Race, J. Nucl. Mater. 498, 282–289 (2018)

    Article  ADS  Google Scholar 

  28. O. Noorikalkhoran, I. Sevostianov, Int. J. Eng. Sci. 120, 119–128 (2017)

    Article  Google Scholar 

  29. S.F.G. Ardekani, K. Hadad, Nucet. 3, 73–80 (2017)

    Article  Google Scholar 

  30. U. Saha, K. Devan, A. Bachchan, G. Pandikumar, S. Ganesan, Pramana 90, 46 (2018)

    Article  ADS  Google Scholar 

  31. D. Guo et al., J Nucl Sci Technol. 53, 161–172 (2016)

    Article  Google Scholar 

  32. M.A. Amirkhani, M.A. Asadabad, M. Hassanzadeh, S.M. Mirvakili, A. Mohammadi, Nucl Sci Tech. 30, 92 (2019)

    Article  Google Scholar 

  33. P. Vladimirov, S. Bouffard, C R Phys. 9, 303–322 (2008)

    Article  ADS  Google Scholar 

  34. M. A. Amirkhani, M. A. Asadabad, M. Hassanzadeh, S. M. Mirvakili, J Radioanal Nucl Ch. 1–9 (2019)

  35. M. Danilkin et al., Radiat. Meas. 126, 106134 (2019)

    Article  Google Scholar 

  36. R. Assylbayev, A. Akilbekov, A. Dauletbekova, A. Lushchik, E. Shablonin, E. Vasil'chenko, Radiat. Meas. 90, 18–22 (2016)

    Article  Google Scholar 

  37. G. Timoshenko, A. Krylov, M. Paraipan, I. Gordeev, Radiat. Meas. 107, 27–32 (2017)

    Article  Google Scholar 

  38. R. Chauhan, P. Rana, Radiat. Meas. 83, 43–46 (2015)

    Article  Google Scholar 

  39. L.R. Greenwood, R.K. Smither, SPECTER: Neutron damage calculations for materials irradiations (Argonne National Lab, Lemont, 1985)

    Book  Google Scholar 

  40. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM: the stopping and range of ions in matter (Cadence Design Systems, San Jose, 2008)

    Google Scholar 

  41. AEOI, Final Safety Analyses Report for Tehran Research Reactor (NSTRI, Tehran, 2009)

    Google Scholar 

  42. D.B. Pelowitz, MCNPXTM user’s manual (Los Alamos National Laboratory, Los Alamos, 2005)

    Google Scholar 

  43. Y. Rahmani, E. Zarifi, A. Pazirandeh, Nukleonik. 55, 323–330 (2010)

    Google Scholar 

  44. L. Greenwood, SPECOMP calculations of radiation damage in compounds (ASTM International, West Conshohocken, 1989)

    Book  Google Scholar 

  45. R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, F.A. Garner, Nucl. Instrum. Meth. B. 310, 75–80 (2013)

    Article  ADS  Google Scholar 

  46. J.F. Ziegler, Nucl. Instrum. Meth. B. 219, 1027–1036 (2004)

    Article  ADS  Google Scholar 

  47. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Meth. B. 268, 1818–1823 (2010)

    Article  ADS  Google Scholar 

  48. J. Ziegler, J. Biersack, U. Littmark, The Stopping and Range of Ions in Solids 1 (SRIM Co., Los Angeles, 1985)

    Google Scholar 

  49. G. Kinchin, R. Pease, Rep. Prog. Phys. 18, 1 (1955)

    Article  ADS  Google Scholar 

  50. M. Dinkgreve, J. Paredes, M.M. Denn, D. Bonn, J Non-Newton Fluid. 238, 233–241 (2016)

    Article  Google Scholar 

  51. A. Karolik, A. Luhvich, J. Phys-Condens Mat. 6, 873 (1994)

    Article  ADS  Google Scholar 

  52. W. Dorchester, RSICC COMPUTER CODE COLLECTION WIMS-D4 (Atomic Energy Establishment,1990)

  53. O. Noori-kalkhoran, M. Gei, Prog. Nucl. Energ. 118, 103079 (2020)

    Article  Google Scholar 

  54. T.S. Byun, M. Li, K. Farrell, Metall. Mater. Trans. A. 44, 84–93 (2013)

    Article  Google Scholar 

  55. G. Haag, Properties of ATR-2E Graphite and Property Changes due to Fast Neutron Irradiation (Forschungszentrum Jülich, Jülich, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Amin Amirkhani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torabi, E., Hasanzadeh, M. & Amirkhani, M.A. The effect of neutron radiation on the yield stress of the Bushehr reactor clad. Appl. Phys. A 126, 532 (2020). https://doi.org/10.1007/s00339-020-03719-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03719-8

Keywords

Navigation