Skip to main content
Log in

Influence of synthesis, dopants, and structure on electrical properties of bismuth ferrite (\(\hbox {BiFeO}_{3}\))

  • Review
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bismuth ferrites (BFO) nanomaterials are one of the promising materials to provide applications in the electrical world for its unique multiferroic properties. The evolution in its research from the pure crystals to doped and co-doped forms has shown mankind the diversity of its properties and subsequent useful applications. The peculiarities of ferroelectric and ferromagnetic properties, as observed in these multiferroics, are the result of the structural perturbations which is due to the nature of the doping element and different synthesis mechanisms. The enhanced magnetoelectric coefficient, high dielectric constant, and improved ferroelectricity of doped BFO open the use in non-volatile memory devices. A consolidation of the noteworthy changes reported in the structural and electrical properties of BFO bulk ceramics, popular category of multiferroics so far is reviewed here in brief. This review mainly focuses on modifications seen in ferroelectric properties with respect to doping at Bismuth site, Iron site, and both or co-doping. As the modifications are mostly due to structural changes, structural and morphological changes occurring due to doping are also covered briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Young, A. Sakthivel, T. Moss, C. Paiva-Santos, J. Appl. Crystallogr. 28(3), 366 (1995)

    Google Scholar 

  2. Z. Cheng, X. Wang, S. Dou, H. Kimura, K. Ozawa, Phys. Rev. B 77(9), 092101 (2008)

    ADS  Google Scholar 

  3. J. Liu, M. Li, L. Pei, B. Yu, D. Guo, X. Zhao, J. Phys. D Appl. Phys. 42(11), 115409 (2009)

    ADS  Google Scholar 

  4. G. Catalan, J.F. Scott, Adv. Mater. 21(24), 2463 (2009)

    Google Scholar 

  5. J. Wang, J. Neaton, H. Zheng, V. Nagarajan, S. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. Schlom, U. Waghmare et al., Science 299(5613), 1719 (2003)

    ADS  Google Scholar 

  6. S.T. Mowri, Q.D. Hossain, M. Gafur, A.N. Ahmed, M.S. Bashar, in Mater. Sci. Forum, vol. 883 (Trans Tech Publ, 2017), vol. 883, pp. 3–6

  7. E.M. Levin, R.S. Roth, J. Res. Natl. Bur. Stand. Sec. A 68(2), 197 (1964)

    Google Scholar 

  8. M. Morozov, N. Lomanova, V. Gusarov, Russ. J. Gen. Chem. 73(11), 1676 (2003)

    Google Scholar 

  9. H. Koizumi, N. Niizeki, T. Ikeda, Jpn. J. Appl. Phys. 3(8), 495 (1964)

    ADS  Google Scholar 

  10. G. Achenbach, W. James, R. Gerson, J. Am. Ceram. Soc. 50(8), 437 (1967)

    Google Scholar 

  11. M. Valant, A.K. Axelsson, N. Alford, Chem. Mater. 19(22), 5431 (2007)

    Google Scholar 

  12. S. Sharma, V. Singh, R. Kotnala, R.K. Dwivedi, J. Mater. Sci. Mater. Electron. 25(4), 1915 (2014)

    Google Scholar 

  13. Z. Jian, N.P. Kumar, M. Zhong, H. Yemin, P.V. Reddy, J. Magn. Magn. Mater. 386, 92 (2015)

    ADS  Google Scholar 

  14. J. Hwang, Y. Yoo, Y. Lee, J.H. Kang, K. Lee, B. Lee, S. Park, J. Korean Phys. Soc. 69(3), 282 (2016)

    ADS  Google Scholar 

  15. A. Hegab, I.A. Farag, A. El-Shabiny, A. Nassaar, A. Ramadan, A. Moustafa, J. Mater. Sci. Mater. Electron. 28(19), 14460 (2017)

    Google Scholar 

  16. A. Revinski, I. Makoed, K. Yanushkevich, A. Galias, O. Demidenko, V. Lazenka, V. Moschalkov, Bull. Russ. Acad. Sci. Phys. 77(3), 352 (2013)

    Google Scholar 

  17. J. Chen, H. Dai, T. Li, D. Liu, R. Xue, H. Xiang, Z. Chen, J. Supercond. Novel Magn. 28(9), 2751 (2015)

    Google Scholar 

  18. S. Mukherjee, R. Gupta, A. Garg, V. Bansal, S. Bhargava, J. Appl. Phys. 107(12), 123535 (2010)

    ADS  Google Scholar 

  19. B. Feng, H. Xue, Z. Xiong, Chin. Sci. Bull. 55(4–5), 452 (2010)

    Google Scholar 

  20. M. Muneeswaran, S.H. Lee, D.H. Kim, B.S. Jung, S.H. Chang, J.W. Jang, B.C. Choi, J.H. Jeong, N. Giridharan, C. Venkateswaran, J. Alloys Compd. 750, 276 (2018)

    Google Scholar 

  21. D. Kothari, V.R. Reddy, A. Gupta, D. Phase, N. Lakshmi, S. Deshpande, A. Awasthi, J. Phys. Condens. Matter 19(13), 136202 (2007)

    ADS  Google Scholar 

  22. B. He, J. Xing, Z.Y. Zhang, J. Cao, Y.T. Duan, J.F. Gu, in J. Adv. Mater. Res., vol. 683 (Trans Tech Publ, 2013), vol. 683, pp. 504–508

  23. S. Pradhan, B. Roul, Phys. B 407(13), 2527 (2012)

    ADS  Google Scholar 

  24. T. Hussain, S.A. Siddiqi, S. Atiq, M. Awan, Prog. Nat. Sci. Mater. 23(5), 487 (2013)

    Google Scholar 

  25. P. Pandit, S. Satapathy, P. Sharma, P. Gupta, S. Yusuf, V. Sathe, Bull. Mater. Sci. 34(4), 899 (2011)

    Google Scholar 

  26. A. Ianculescu, F.P. Gheorghiu, P. Postolache, O. Oprea, L. Mitoseriu, J. Alloys Compd. 504(2), 420 (2010)

    Google Scholar 

  27. S. Arafat, S. Ibrahim, J. Mater. Sci. 8(10), 716 (2017)

    Google Scholar 

  28. M. Zhong, N.P. Kumar, E. Sagar, Z. Jian, H. Yemin, P.V. Reddy, Mater. Chem. Phys. 173, 126 (2016)

    Google Scholar 

  29. M. Yadav, A. Agarwal, S. Sanghi, M. Tuteja, T. Bhasin, J. Singh, Mater. Res. Express 6(10), 106107 (2019)

    ADS  Google Scholar 

  30. Y. Zhang, Y. Wang, J. Qi, Y. Tian, M. Sun, J. Zhang, T. Hu, M. Wei, Y. Liu, J. Yang, J. Nanomater. 8(9), 711 (2018)

    Google Scholar 

  31. Q.H. Jiang, C.W. Nan, Z.J. Shen, J. Am. Ceram. Soc. 89(7), 2123 (2006)

    Google Scholar 

  32. J. Lin, Z. Guo, M. Li, Q. Lin, K. Huang, Y. He, J. Appl. Biomater. Funct. 16(1–suppl), 93 (2018)

    Google Scholar 

  33. J. Silva, A. Reyes, H. Esparza, H. Camacho, L. Fuentes, Integr. Ferroelectr. 126(1), 47 (2011)

    Google Scholar 

  34. V. Srinivas, A. Raghavender, K.V. Kumar, Phys. Res. Int. 2016, (2016)

  35. L. Liu, S. Wang, Z. Yin, W. Liu, X. Xu, C. Zhang, X. Li, J. Yang, Chin. Phys. B 25(9), 097801 (2016)

    ADS  Google Scholar 

  36. A. Kumar, K. Yadav, Mater. Sci. Eng 176(3), 227 (2011)

    Google Scholar 

  37. J.Z. Huang, Y. Wang, Y. Lin, M. Li, C. Nan, J. Appl. Phys. 106(6), 063911 (2009)

    ADS  Google Scholar 

  38. A. Kumar, K. Yadav, J. Phys. Chem. Solids 72(11), 1189 (2011)

    ADS  Google Scholar 

  39. D.V. Thang, N.C. Khang, N.M. Hung, N. Van Minh et al., AIMS Mater. Sci. 4(4), 982 (2017)

    Google Scholar 

  40. A.S. Priya, I.S. Banu, M. Chavali, Arab. J. Sci. Eng. 40(7), 2079 (2015)

    Google Scholar 

  41. P.R. Vanga, R. Mangalaraja, M. Ashok, J. Exp. Nanosci. 11(17), 1348 (2016)

    Google Scholar 

  42. E. Jartych, T. Pikula, K. Kowal, J. Dzik, P. Guzdek, D. Czekaj, Nanoscale Res. Lett. 11(1), 234 (2016)

    ADS  Google Scholar 

  43. V. Koval, I. Skorvanek, J. Durisin, G. Viola, A. Kovalcikova, P. Svec, K. Saksl, H. Yan, J. Mater. Chem. C 5(10), 2669 (2017)

    Google Scholar 

  44. A. Jena, S. Satapathy, J. Mohanty, J. Appl. Phys. 124(17), 174103 (2018)

    ADS  Google Scholar 

  45. G.S. Lotey, N. Verma, J. Nanopart. Res. 14(3), 742 (2012)

    ADS  Google Scholar 

  46. A. Beniwal, J.S. Bangruwa, B. Vasisth, S. Gairola, V. Verma, Int. J. Eng. Res. 5, 03 (2016)

    Google Scholar 

  47. Y. Li, Y. Fan, H. Zhang, X. Teng, X. Dong, H. Liu, X. Ge, Q. Li, W. Chen, X. Li et al., J. Supercond. Novel Magn. 27(5), 1239 (2014)

    Google Scholar 

  48. A. Puhan, B. Bhushan, V. Kumar, H. Panda, D. Rout, in AIP Conference Proceedings, vol. 1953 (AIP Publishing LLC, 2018), vol. 1953, p. 030227

  49. R. Pandey, C. Panda, P. Kumar, M. Kar, J. Sol Gel. Sci. Technol. 85(1), 166 (2018)

    Google Scholar 

  50. A.Z. Simões, F.G. Garcia, C. dos Santos Riccardi, Mater. Chem. Phys. 116(2–3), 305 (2009)

    Google Scholar 

  51. S. Kazhugasalamoorthy, P. Jegatheesan, R. Mohandoss, N. Giridharan, B. Karthikeyan, R.J. Joseyphus, S. Dhanuskodi, J. Alloys Compd. 493(1–2), 569 (2010)

    Google Scholar 

  52. S. Gupta, M. Tomar, A. James, V. Gupta, J. Mater. Sci. 49(15), 5355 (2014)

    ADS  Google Scholar 

  53. Y. Tang, T. Han, H.L. Liu, J. Lin, J. Supercond. Novel Magn. 25(8), 2753 (2012)

    Google Scholar 

  54. S. Pradhan, J. Das, P. Rout, V. Mohanta, S. Das, S. Samantray, D. Sahu, J.L. Huang, S. Verma, B. Roul, J. Phys. Chem. Solids 71(11), 1557 (2010)

    ADS  Google Scholar 

  55. C. Fu, X. Long, W. Cai, G. Chen, X. Deng, Ferroelectrics 460(1), 157 (2014)

    Google Scholar 

  56. B. Dhanalakshmi, K. Pratap, B.P. Rao, P.S. Rao, J. Alloys Compd. 676, 193 (2016)

    Google Scholar 

  57. L. Yin, W. Liu, G. Tan, H. Ren, J. Supercond. Novel Magn. 27(12), 2765 (2014)

    Google Scholar 

  58. Y. Ma, X. Tang, M. Lu, K. Zheng, W. Mao, J. Zhang, J. Yang, X. Li, J. Supercond. Novel Magn. 28(12), 3593 (2015)

    Google Scholar 

  59. P. Priyadharsini, A. Pradeep, B. Sathyamoorthy, G. Chandrasekaran, J. Phys. Chem. Solids 75(7), 797 (2014)

    ADS  Google Scholar 

  60. J. Kim, C. Raghavan, J. Choi, S. Kim, J. Korean Phys. Soc. 66(7), 1051 (2015)

    ADS  Google Scholar 

  61. A. Khesro, R. Boston, I. Sterianou, D.C. Sinclair, I.M. Reaney, J. Appl. Phys. 119(5), 054101 (2016)

    ADS  Google Scholar 

  62. M. Matin, M. Hossain, M. Rizvi, M. Zubair, M. Hakim, A. Hussain, M. Islam, in 2017 IEEE 19th Electronics Packaging Technology Conference (EPTC) (IEEE, 2017), pp. 1–7

  63. P. Kumar, M. Kar, Mater. Chem. Phys. 148(3), 968 (2014)

    Google Scholar 

  64. J. Sharma, A. Kumar, S. Kumar, A. Srivastava, Appl. Phys. A 123(8), 522 (2017)

    ADS  Google Scholar 

  65. W. Zhang, X. Zhu, L. Wang, X. Xu, Q. Yao, W. Mao, X. Li, J. Supercond. Novel Magn. 30(11), 3001 (2017)

    Google Scholar 

  66. S. Ahmed, S.K. Barik, S. Hajra, Appl. Phys. A 125(5), 303 (2019)

    ADS  Google Scholar 

  67. P. Sharma, A. Kumar, D. Varshney, J. Adv. Ceram. 4(4), 292 (2015)

    Google Scholar 

  68. S. Ali, M. Kiani, S. Rizwan, J. Powder Metall. Min. 8(693), 2 (2018)

    Google Scholar 

  69. Z. Quan, W. Liu, H. Hu, S. Xu, B. Sebo, G. Fang, M. Li, X. Zhao, J. Appl. Phys. 104(8), 084106 (2008)

    ADS  Google Scholar 

  70. S. Godara, B. Kumar, Ceram. Int. 41(5), 6912 (2015)

    Google Scholar 

  71. T. Murtaza, I.A. Salmani, J. Ali, M.S. Khan, J. Supercond. Novel Magn. 31(6), 1955 (2018)

    Google Scholar 

  72. C.M. Raghavan, J.W. Kim, S.S. Kim, T.K. Song, Appl. Phys. A 119(2), 667 (2015)

    ADS  Google Scholar 

  73. V. Khikhlovskyi, G. Blake, The renaissance of multiferroics: bismuth ferrite (bifeo3)—a candidate multiferroic material in nanoscience. Ph.D. thesis, University of Groningen (2010)

  74. A. Bai, S. Zhao, J. Chen, J. Nanomater 2014, (2014)

  75. P.K. Naini, J. Satapathy, E.M. Abhinav, A. Srinivas, M.M. Raja, Thermomagnetic properties of Dy Ho MnO multiferroics. Phys. Status Solidi (a) 217(17), 2000138 (2020)

    ADS  Google Scholar 

  76. N. Pavan Kumar, J. Satapathy, D. Singh, M.M. Patidar, V. Ganesan, A. Srinivas, M. Manivel Raja, Magnetocaloric properties of Gd1−xHoxMnO3 multiferroic compounds. J. Low Temp. Phys. 200(1–2), 40–50 (2020)

    ADS  Google Scholar 

  77. N. Pavan Kumar, D. Singh, M.M. Patidar, J. Satapathy, V. Ganesan, P.D. Babu, A. Srinivas, M. Manivel Raja, Magnetic, thermal and magnetocaloric studies of polycrystalline HoMnO3 compound. Appl Phys A 125(7), 487 (2019)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya G. Nair.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, S.G., Satapathy, J. & Kumar, N.P. Influence of synthesis, dopants, and structure on electrical properties of bismuth ferrite (\(\hbox {BiFeO}_{3}\)). Appl. Phys. A 126, 836 (2020). https://doi.org/10.1007/s00339-020-04027-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04027-x

Keywords

Navigation