Skip to main content
Log in

Boosted anchor quality factor of a thin-film aluminum nitride-on-silicon length extensional mode MEMS resonator using phononic crystal strip

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents an anchor quality factor boosted thin-film Aluminum Nitride-On-Silicon length extensional mode microelectromechanical systems (MEMS) resonator supported by phononic crystal (PnC) strip-based tethers. The proposed PnC strip is a holed circle PnC strip. This proposed resonator is compared with the same resonator supported by two types of different tethers which are named one-quarter wavelength tether and circle PnC strip tether. Furthermore, the dependence of the bandgaps (BGs) of the proposed PnC strip on its geometrical dimensions is also investigated. The quality factor (Q) of the proposed resonator is compared with that of the resonator with other tether configurations. In addition, the impacts of the number of unit cell of the proposed PnC strip on the anchor quality factor (\(Q_{anchor}\)) and Q are also evaluated in this work. The designed resonator operates at approximately 133 MHz and the BG covers this resonant frequency is 33.24 MHz. The simulation results show that the \(Q_{anchor}\) and Q of the proposed resonator achieve higher than that for the counterparts. The average \(Q_{anchor}\) and Q of the resonator with the proposed PnC strip are superior to 1.8884 x\(10^8\%\) and 54767.38\(\%\) over that with the circle PnC strip. These values are 4.3195 x\(10^7\%\) and 19902.5\(\%\) as compared to the one with quarter-wavelength tether. The finite element (FE) analysis in COMSOL Multiphysics is utilized for the PnC strips and resonator simulation scenarios. MATLAB and EXCEL are applied to calculate the post processing simulation results .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.T.C. Nguyen, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(2), 251–270 (2007). https://doi.org/10.1109/TUFFC.2007.240

    Article  Google Scholar 

  2. B.P. Harrington, R. Abdolvand, J. Micromech. Microeng. 21, 085021 (2011)

    Article  ADS  Google Scholar 

  3. J.T.M. Van Beek, P.G. Steeneken, B. Giesbers, IEEE International Frequency Control Symposium and Exposition (2006)

  4. J.E. Lee, J. Yan, A.A. Seshia, J. Micromech. Microeng. 21, 045010 (2011)

    Article  Google Scholar 

  5. J.R. Clark, W.T. Hsu, M.A. Abdelmoneum, C.C. Nguyen, J. Microelectromech. Syst. 14, 1298 (2005)

    Article  Google Scholar 

  6. H. Zhu, Y. Xu, J.E. Lee, J. Microelectromech. Syst. 24, 771 (2015)

    Article  Google Scholar 

  7. G. Piazza, P.J. Stephanou, A.P. Pisano, Journal of Microelectromechanical systems 15(6), 1406–1418 (2006). https://doi.org/10.1109/JMEMS.2006.886012

    Article  Google Scholar 

  8. C.M. Lin, J.C. Hsu, D.G. Senesky, A.P. Pisano, IEEE International Frequency Control Symposium (FCS) (2014)

  9. J.C. Hsu, F.C. Hsu, T.C. Huang, C.H. Wang, P. Chang, IEEE International Ultrasonics Symposium (2011)

  10. R. Ardito, M. Cremonesi, L. D’Alessandro, A. Frangi, IEEE International Ultrasonics Symposium (IUS) (2016)

  11. V.J. Gokhale, J.J. Gorman, Appl. Phys. Lett. 111, 013501 (2017)

    Article  ADS  Google Scholar 

  12. M.W.U. Siddiqi, J.E.Y. Lee, IEEE Micro Electro Mechanical Systems (MEMS) 28, 094002 (2018)

    Google Scholar 

  13. S. Mohammadi, A. Adibi, J. Microelectromech. Syst. 21, 379 (2012)

    Article  Google Scholar 

  14. Z.G. Wang, S.H. Lee, C.K. Kim, C.M. Park, K. Nahm, S.A. Nikitov, J. Appl. Phys. 103, 064907 (2008)

    Article  ADS  Google Scholar 

  15. D. Feng, D. Xu, G. Wu, B. Xiong, Y. Wang, J. Appl. Phys. 115, 024503 (2014)

    Article  ADS  Google Scholar 

  16. S. Mohammadi, A.A. Eftekhar, W.D. Hunt, A. Adibi, Appl. Phys. Lett. 94, 051906 (2009)

    Article  ADS  Google Scholar 

  17. F.C. Hsu, C.I. Lee, J.C. Hsu, T.C. Huang, C.H. Wang, P. Chang, Appl. Phys. Lett. 96, 051902 (2010)

    Article  ADS  Google Scholar 

  18. A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, V. Laude, Phys. Rev. E 74, 046610 (2006)

    Article  ADS  Google Scholar 

  19. W. Li, F. Meng, Y. Fan Li, X. Huang, Struct. Multidiscip. Optim. 60, 2405 (2019)

    Article  Google Scholar 

  20. A. Konstantopoulou, N. Aravantinos-Zafiris, M.M. Sigalas, J. Appl. Phys. 127, 075101 (2020)

    Article  ADS  Google Scholar 

  21. U. Rawat, D.R. Nair, A. DasGupta, J. Microelectromech. Syst. 26, 773 (2017)

    Article  Google Scholar 

  22. F.H. Bao, X.Q. Wu, X. Zhou, Q.D. Wu, X.S. Zhang, J.F. Bao, Micromachines 10, 626 (2019)

    Article  Google Scholar 

  23. A. Frangi, M. Cremonesi, A. Jaakkola, T. Pensala, Sens. ActuaT. A: Phys. 190, 127 (2013)

    Article  Google Scholar 

  24. G.K. Ho, R. Abdolvand, A. Sivapurapu, S. Humad, F. Ayazi, J. Microelectromech. Syst. 17, 512 (2008)

    Article  Google Scholar 

  25. P.J. Stephanou, G. Piazza, C.D. White, M.B. Wijesundara, A.P. Pisano, Sens. Actuators Phys. 134(1), 152–160 (2007). https://doi.org/10.1016/j.sna.2006.04.032

    Article  Google Scholar 

  26. J. Zou, C. M. Lin, A. P. Pisano, IEEE International Frequency Control Symposium the European Frequency and Time, Forum (2015)

  27. Y.Y. Chen, Y.T. Lai, C.M. Lin, IEEE International Frequency Control Symposium (FCS) (2014)

  28. C.M. Lin, J. Zou, Y.Y. Chen, A.P. Pisano, IEEE International Ultrasonics Symposium (IUS) (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Dep Ha.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, T.D. Boosted anchor quality factor of a thin-film aluminum nitride-on-silicon length extensional mode MEMS resonator using phononic crystal strip. Appl. Phys. A 127, 738 (2021). https://doi.org/10.1007/s00339-021-04885-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04885-z

Keywords

Navigation