Skip to main content
Log in

Oxygen defect related high temperature dielectric relaxation behavior in (Ba,La)(Zr,Sn,Ti)O3 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ferroelectric materials with the typical perovskite structure are widely used in capacitors, ultrasonic devices, oil drilling, transducers, and other fields. Lead-lanthanum-zirconium-titanate ceramics co-doped with Sn and Ba, have been widely investigated. However, there is little attention has been focused on the dielectric properties of barium-lanthanum-zirconium-titanate. Thus, in this work, Sn doped Ba0.955La0.03Zr0.02Ti0.98O3 ferroelectric ceramics were prepared via a classical high-temperature solid state reaction. Scanning Electron Microscopy (SEM) was used to observe the surface appearance of ceramics. The X-ray diffraction (XRD) patterns at room temperature, indicate that the ceramics are well crystallized. Impedance properties and dielectric properties reflect the characteristic of typical high temperature dielectric relaxation behavior. The conductive activation energy and the relaxation activation energy are obtained through the calculation of the Arrhenius law. The fitting results show that the dielectric relaxation behavior at high-temperature, was related to the oxygen defect. The electrical modulus verified the partial short-range carrier migration, also contribute to the high-temperature dielectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.H. Haertling, J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  Google Scholar 

  2. L.W. Wu, X.H. Wang, H.L. Gong, Y.N. Hao, Z.B. Shen, L.T. Li, J. Mater. Chem. C 3, 750–758 (2015)

    Article  Google Scholar 

  3. R. Kumar, K. Asokan, S. Patnaik, B. Birajdar, J. Alloy. Compd. 737, 561–567 (2018)

    Article  Google Scholar 

  4. M. Gangly, S.K. Rout, T.P. Sinha, S.K. Sharma, H.Y. Park, C.W. Ahn, I.W. Kim, J. Alloys Compd. 579, 473–484 (2013)

    Article  Google Scholar 

  5. F. Moura, A.Z. Simões, B.D. Stojanovic, M.A. Zaghete, E. Longo, J.A. Varela, J. Alloys Compd. 462, 129–134 (2008)

    Article  Google Scholar 

  6. L. Zhao, X. Wei, IEEE Trans. Dielectr. Electr. Insul. 22, 728–733 (2015)

    Article  Google Scholar 

  7. C. Elissalde, J. Ravez, J. Mater. Chem. 11, 1957–1967 (2001)

    Article  Google Scholar 

  8. X.Y. Wei, Y.J. Feng, X. Yao, Appl. Phys. Lett. 83, 2031–2033 (2003)

    Article  Google Scholar 

  9. R. Xu, Z. Xu, Y.J. Feng, J.J. Tian, D, Huang. Ceram. Int. 42, 12875–12879 (2016)

    Article  Google Scholar 

  10. Y.Q. Li, W.P. Geng, L. Zhang, X.Y. Yang, X.J. Qiao, D.W. Zheng, L.Y. Zhang, J. He, X.J. Hou, X.J. Chou, J. Alloy. Compd. 868, 159129 (2021)

    Article  Google Scholar 

  11. Y. Yang, P. Liu, Y.J. Zhang, K.R. Kandula, J.W. Xu, G.Z. Zhang, Ceram. Int. 46, 18106–18113 (2020)

    Article  Google Scholar 

  12. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751–767 (1976)

    Article  ADS  Google Scholar 

  13. X.C. Wang, W.Q. Cai, Z. Xiao, X.M. Yu, J.W. Chen, T.Q. Yang, J. Mater. Sci. Mater. Electron. 31, 17013–17017 (2020)

    Article  Google Scholar 

  14. Q.F. Zhang, S.L. Jiang, Y.K. Zeng, J. Mater. Res. 26, 1436–1440 (2011)

    Article  ADS  Google Scholar 

  15. Q. Zhang, X.L. Liu, Y. Zhang, X.Z. Song, J. Zhu, I. Baturin, J.F. Chen, Ceram. Int. 41, 3030–3035 (2015)

    Article  Google Scholar 

  16. B.L. Peng, S.L. Tang, L. Lu, Q. Zhang, H.T. Huang, G. Bai, L. Miao, B.S. Zou, L.J. Liu, W.H. Sun, Z.L. Wang, Nano Energy 77, 105132 (2020)

    Article  Google Scholar 

  17. K. Meng, W.H. Li, X.G. Tang, Q.X. Liu, Y.P. Jiang, Appl. Phys. A 127, 337 (2021)

    Article  ADS  Google Scholar 

  18. G. Arlt, D. Hennings, G.D. With, J. Appl. Phys. 58, 1619–1625 (1985)

    Article  ADS  Google Scholar 

  19. M. Peddigari, H. Palneedi, G.T. Hwang, K.W. Lim, G.Y. Kim, D.Y. Jeong, J.G. Ryu, A.C.S. Appl, Mater. Interfaces 10, 20720–20727 (2018)

    Article  Google Scholar 

  20. J. Wei, T.Q. Yang, H.S. Wang, J. Eur. Ceram. Soc. 39, 624–630 (2019)

    Article  Google Scholar 

  21. L.N. Liu, C.C. Wang, X.H. Sun, G.J. Wang, C.M. Lei, T. Li, J. Alloy. Compd. 552, 279–282 (2013)

    Article  Google Scholar 

  22. N. Zhang, Q.J. Li, S.G. Huang, Y. Yu, J. Zheng, C. Cheng, C.C. Wang, J. Alloy. Compd. 652, 1–8 (2015)

    Article  Google Scholar 

  23. G. Singh, V.S. Tiwari, P.K. Gupta, J. Appl. Phys. 107, 064103 (2010)

    Article  ADS  Google Scholar 

  24. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B 49, 7868 (1994)

    Article  ADS  Google Scholar 

  25. V. Senthi, T. Badapanda, S.N. Kumar, P. Kumar, S. Panigrahi, J. Polym. Res. 19, 9838 (2012)

    Article  Google Scholar 

  26. S. Pattanayak, B.N. Parida, P.R. Das, R.N.P. Choudhary, Appl. Phys. A 112, 387–395 (2013)

    Article  ADS  Google Scholar 

  27. S. Dash, R.N.P. Choudhary, A. Kumar, J. Phys. Chem. Solids 75, 1376–1382 (2014)

    Article  ADS  Google Scholar 

  28. T.S.I. John, C.S. Derek, R.W. Anthony, Adv. Mater. 2, 132–138 (1990)

    Article  Google Scholar 

  29. J.F. Scott, M. Dawber, Appl. Phys. Lett. 76, 3801–3803 (2000)

    Article  ADS  Google Scholar 

  30. J. Miao, X.G. Xu, Y. Jiang, L.X. Cao, B.R. Zhao, Appl. Phys. Lett. 95, 132905 (2009)

    Article  ADS  Google Scholar 

  31. M. Coskun, Ö. Polat, F.M. Coskun, Z. Durmus, M. Cağlar, A. Türüt, RSC Adv. 8, 4634 (2018)

    Article  ADS  Google Scholar 

  32. R. Mouss, A. Bougoffa, A. Trabelsi, E. Dhahri, M.P.F. Graca, M.A. Valente, R. Barille, J. Mater. Sci. Mater. Electron. 32, 11453–11466 (2021)

    Article  Google Scholar 

  33. A. Singh, K. Prasad, A. Prasad, Process. Appl. Ceram. 9, 33–42 (2015)

    Article  Google Scholar 

  34. J. Kolte, P.H. Salame, A.S. Daryapurkar, P. Gopalan, AIP Adv. 5, 097164 (2015)

    Article  ADS  Google Scholar 

  35. K. Sangtae, Monatsh. Chem. 140, 1053–1057 (2009)

    Article  Google Scholar 

  36. R. Panigrahi, S. Hajra, M. De, A. Kumar, A.R. James, R.N.P. Choudhary, Solid State Sci. 92, 6–12 (2019)

    Article  ADS  Google Scholar 

  37. Q.L. Li, J.W. Liu, D.Y. Lu, W.T. Zheng, Ceram. Int. 44, 7251–7258 (2018)

    Article  Google Scholar 

  38. F.I.H. Rhouma, A. Dhahri, J. Dhahri, M.A. Valente, Appl. Phys. A 108, 593–600 (2012)

    Article  ADS  Google Scholar 

  39. S.N. Das, S.K. Pradhan, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 28, 18913–18928 (2017)

    Article  Google Scholar 

  40. L. Aswaghosh, D. Manoharan, N.C. Jaya, Phys. Chem. Chem. Phys. 8, 5995–6004 (2016)

    Article  Google Scholar 

  41. M. Chen, Z.L. Pei, C. Sun, L.S. Wen, X. Wang, Mater. Lett. 48, 194–198 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51604087, 11574057, 11904056), the Guangdong Provincial Natural Science Foundation of China (Grant No. 2016A030313718), and the Science and Technology Program of Guangdong Province of China (Grant Nos. 2017A010104022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhua Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 290 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, K., Li, W., Tang, X. et al. Oxygen defect related high temperature dielectric relaxation behavior in (Ba,La)(Zr,Sn,Ti)O3 ceramics. Appl. Phys. A 127, 745 (2021). https://doi.org/10.1007/s00339-021-04896-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04896-w

Keywords

Navigation