Skip to main content
Log in

Near-field-assisted localization: effect of size and filling factor of randomly distributed zinc oxide nanoneedles on multiple scattering and localization of light

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We investigate the influence of the diameter and the filling factor of randomly arranged ZnO nanoneedles on the multiple scattering and localization of light in disordered dielectrics. Coherent, ultra-broadband second-harmonic (SH) microscopy is used to probe the spatial localization of light in representative nm-sized ZnO arrays of needles. We observe strong fluctuations of the SH intensity inside different ZnO needle geometries. Comparison of the SH intensity distributions with predictions based on a one-parameter scaling model indicate that SH fluctuations can be taken as a quantitative measure for the degree of localization. Interestingly, the strongest localization signatures are found for densely packed arrays of thin needles with diameters in the range of only 30 nm range, despite the small scattering cross section of these needles. FDTD simulations indicate that in this case coupling of electric near-fields between neighbouring needles governs the localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Abrahams (ed.), 50 years of anderson localization (World Scientific, Singapore, 2010), p. 597. http://www.worldscientific.com/worldscibooks/10.1142/7663

    Book  MATH  Google Scholar 

  2. C. Rockstuhl, F. Lederer, K. Bittkau, T. Beckers, R. Carius, The impact of intermediate reflectors on light absorption in tandem solar cells with randomly textured surfaces. Appl. Phys. Lett. 94, 211101–211103 (2009)

    Article  ADS  Google Scholar 

  3. M.A. Green, Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions. Prog. Photovolt. Res. Appl. 10, 235–241 (2002)

    Article  Google Scholar 

  4. A. Polman, H.A. Atwater, Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mat. 11, 174–177 (2012)

    Article  Google Scholar 

  5. S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997)

    Article  Google Scholar 

  6. J. Steidtner, B. Pettinger, Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys. Rev. Lett. 100, 236101 (2008)

    Article  ADS  Google Scholar 

  7. P.-E. Wolf, G. Maret, Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 55, 2696 (1985)

    Article  ADS  Google Scholar 

  8. D.S. Wiersma, P. Bartolini, A. Lagendijk, R. Righini, Localization of light in a disordered medium. Nature 390, 671–673 (1997)

    Article  ADS  Google Scholar 

  9. M.P.V. Albada, A. Lagendijk, Observation of weak localization of light in a random medium. Phys. Rev. Lett. 55, 2692 (1985)

    Article  ADS  Google Scholar 

  10. H. Cao, Y.G. Zhao, H.C. Ong, R.P.H. Chang, Far-field characteristics of random lasers. Phys. Rev. B 59, 15107–15111 (1999)

    Article  ADS  Google Scholar 

  11. J. Fallert, R.J.B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, H. Kalt, Co-existence of strongly and weakly localized random laser modes. Nat. Photon. 3, 279–282 (2009)

    Article  ADS  Google Scholar 

  12. D.S. Wiersma, The physics and applications of random lasers. Nat. Phys. 4, 359–367 (2008)

    Article  Google Scholar 

  13. X. Wu, W. Fang, A. Yamilov, A.A. Chabanov, A.A. Asatryan, L.C. Botten, H. Cao, Random lasing in weakly scattering systems. Phys. Rev. A 74, 053812 (2006)

    Article  ADS  Google Scholar 

  14. S.I. Bozhevolnyi, J. Beermann, V. Coello, Direct observation of localized second-harmonic enhancement in random metal nanostructures. Phys. Rev. Lett. 90, 197403 (2003)

    Article  ADS  Google Scholar 

  15. C. Anceau, S. Brasselet, J. Zyss, P. Gadenne, Local second-harmonic generation enhancement on gold nanostructures probed by two-photon microscopy. Opt. Lett. 28, 713–715 (2003)

    Article  ADS  Google Scholar 

  16. M.I. Stockman, D.J. Bergman, C. Anceau, S. Brasselet, J. Zyss, Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations. Phys. Rev. Lett. 92, 057402 (2004)

    Article  ADS  Google Scholar 

  17. S. Gresillon, L. Aigouy, A.C. Boccara, J.C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V.A. Shubin, A.K. Sarychev, V.M. Shalaev, Experimental observation of localized optical excitations in random metal-dielectric films. Phys. Rev. Lett. 82, 4520–4523 (1999)

    Article  ADS  Google Scholar 

  18. L. Sapienza, H. Thyrrestrup, S. Stobbe, P.D. Garcia, S. Smolka, P. Lodahl, Cavity quantum electrodynamics with Anderson-localized modes. Science 327, 1352–1355 (2010)

    Article  ADS  Google Scholar 

  19. C. Caer, X. Le Roux, E. Cassan, Enhanced localization of light in slow wave slot photonic crystal waveguides. Opt. Lett. 37, 3660–3662 (2012)

    Article  ADS  Google Scholar 

  20. S. Stützer, Y.V. Kartashov, V.A. Vysloukh, A. Tünnermann, S. Nolte, M. Lewenstein, L. Torner, A. Szameit, Anderson cross-localization. Opt. Lett. 37, 1715–1717 (2012)

    Article  ADS  Google Scholar 

  21. C. Conti, A. Fratalocchi, Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals. Nat. Phys. 4, 794–798 (2008)

    Article  Google Scholar 

  22. S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  ADS  Google Scholar 

  23. M. Mascheck, S. Schmidt, M. Silies, T. Yatsui, K. Kitamura, M. Ohtsu, D. Leipold, E. Runge, C. Lienau, Observing the localization of light in space and time by ultrafast second-harmonic microscopy. Nat. Photonics 6, 293–298 (2012)

    Article  ADS  Google Scholar 

  24. I.M. Vellekoop, A.P. Mosk, Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007)

    Article  ADS  Google Scholar 

  25. E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673 (1979)

    Article  ADS  Google Scholar 

  26. D.J. Thouless, Electrons in disordered systems and the theory of localization. Phys. Rep. 13, 93–142 (1974)

    Article  ADS  Google Scholar 

  27. K. Busch, C.M. Soukoulis, E.N. Economou, Transport and scattering mean free paths of classical waves. Phys. Rev. B 50, 93–98 (1994)

    Article  ADS  Google Scholar 

  28. H. Cao, Y.G. Zhao, S.T. Ho, E.W. Seelig, Q.H. Wang, R.P.H. Chang, Random laser action in semiconductor powder. Phys. Rev. Lett. 82, 2278–2281 (1999)

    Article  ADS  Google Scholar 

  29. H. Cao, J.Y. Xu, D.Z. Zhang, S.H. Chang, S.T. Ho, E.W. Seelig, X. Liu, R.P.H. Chang, Spatial confinement of laser light in active random media. Phys. Rev. Lett. 84, 5584–5587 (2000)

    Article  ADS  Google Scholar 

  30. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041103–041301 (2005)

    Article  Google Scholar 

  31. V. Srikant, D.R. Clarke, On the optical band gap of zinc oxide. J. Appl. Phys. 83, 5447–5451 (1998)

    Article  ADS  Google Scholar 

  32. A.B. Djurišić, Y. Chan, E.H. Li, The optical dielectric function of ZnO. Appl. Phys. A 76, 37–43 (2003)

    Article  ADS  Google Scholar 

  33. A.B. Djurisić, Y.H. Leung, Optical properties of ZnO nanostructures. Small 2, 944–961 (2006)

    Article  Google Scholar 

  34. B. Piglosiewicz, D. Sadiq, M. Mascheck, S. Schmidt, M. Silies, P. Vasa, C. Lienau, Ultrasmall bullets of light? focusing few-cycle light pulses to the diffraction limit. Opt. Express 19, 14451–14463 (2011)

    Article  ADS  Google Scholar 

  35. S. Schmidt, M. Mascheck, M. Silies, T. Yatsui, K. Kitamura, M. Ohtsu, C. Lienau, Distinguishing between ultrafast optical harmonic generation and multi-photon-induced luminescence from ZnO thin films by frequency-resolved interferometric autocorrelation microscopy. Opt. Express 18, 25016–25028 (2010)

    Article  ADS  Google Scholar 

  36. J. Sartor, F. Maier-Flaig, J. Conradt, J. Fallert, H. Kalt, D. Weissenberger, D. Gerthsen, Modifying growth conditions of ZnO nanorods for solar cell applications. Phys. Status Solidi (c) 7, 1583–1585 (2010)

    Article  ADS  Google Scholar 

  37. H. Zhou, J. Fallert, J. Sartor, R.J.B. Dietz, C. Klingshirn, H. Kalt, D. Weissenberger, D. Gerthsen, H. Zeng, W. Cai, Ordered n-type ZnO nanorod arrays. Appl. Phys. Lett. 92, 132112–132113 (2008)

    Article  ADS  Google Scholar 

  38. K. Kitamura, T. Yatsui, M. Ohtsu, G.C. Yi, Fabrication of vertically aligned ultrafine ZnO nanorods using metal-organic vapor phase epitaxy with a two-temperature growth method. Nanotechnology 19, 175305 (2008)

    Article  ADS  Google Scholar 

  39. R. Hauschild, H. Lange, H. Priller, C. Klingshirn, R. Kling, A. Waag, H.J. Fan, M. Zacharias, H. Kalt, Stimulated emission from ZnO nanorods. Phys. Status Solidi (b) 243, 853–857 (2006)

    Article  ADS  Google Scholar 

  40. D.S. Kim, S.C. Hohng, V. Malyarchuk, Y.C. Yoon, Y.H. Ahn, K.J. Yee, J.W. Park, J. Kim, Q.H. Park, C. Lienau, Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. Phys. Rev. Lett. 91, 143901 (2003)

    Article  ADS  Google Scholar 

  41. D.C. Dai, S.J. Xu, S.L. Shi, M.H. Xie, C.M. Che, Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature. Opt. Lett. 30, 3377–3379 (2005)

    Article  ADS  Google Scholar 

  42. G. Stibenz, G. Steinmeyer, Interferometric frequency-resolved optical gating. Opt. Express 13, 2617–2626 (2005)

    Article  ADS  Google Scholar 

  43. A. Richardella, P. Roushan, S. Mack, B. Zhou, D.A. Huse, D.D. Awschalom, A. Yazdani, Visualizing critical correlations near the metal-insulator transition in ga1-xMnxAs. Science 327, 665–669 (2010)

    Article  ADS  Google Scholar 

  44. I.V. Lerner, Distribution functions of current density and local density of states in disordered quantum conductors. Phys. Lett. A 133, 253–259 (1988)

    Article  ADS  Google Scholar 

  45. B.L. Altshuler, V.E. Kravtsov, I.V. Lerner, Applicability of scaling description to the distribution of mesoscopic fluctuations. Phys. Lett. A 134, 488–492 (1989)

    Article  ADS  Google Scholar 

  46. F. Riboli, P. Barthelemy, S. Vignolini, F. Intonti, A. De Rossi, S. Combrie, D.S. Wiersma, Anderson localization of near-visible light in two dimensions. Opt. Lett. 36, 127–129 (2011)

    Article  ADS  Google Scholar 

  47. V. Dobrosavljević, E. Abrahams, E. Miranda, S. Chakravarty, Scaling theory of two-dimensional metal-insulator transitions. Phys. Rev. Lett. 79, 455–458 (1997)

    Article  ADS  Google Scholar 

  48. C. Castellani, G. Kotliar, P.A. Lee, Fermi-liquid theory of interacting disordered systems and the scaling theory of the metal-insulator transition. Phys. Rev. Lett. 59, 323–326 (1987)

    Article  ADS  Google Scholar 

  49. T.M. Nieuwenhuizen, M.C.W. van Rossum, Intensity distributions of waves transmitted through a multiple scattering medium. Phys. Rev. Lett. 74, 2674 (1995)

    Article  ADS  Google Scholar 

  50. A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, Meep: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687–702 (2010)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft (SPP1391, SPP1839 and DFG-NSF Materials World Network), the Japan Science and Technology Agency (JST) within the DFG-JST strategic programme “Nanoelectronics”, by the European Union (project “CRONOS”, Grant number 280879-2) the Korea Foundation for International Cooperation of Science and Technology (Global Research Laboratory project, K20815000003) and the German–Israeli Foundation (Grant no. 1256) is gratefully acknowledged. M.S. wishes to thank the BMBF for a personal research grant “Photonic transistors” in the NanoMatFutur program. J.S. and H.K acknowledge support by the Deutsche Forschungsgemeinschaft (KL345/23-2) and the Karlsruhe School of Optics and Photonics (KSOP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Silies.

Additional information

This article is part of the topical collection “Ultrafast Nanooptics” guest edited by Martin Aeschlimann and Walter Pfeiffer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silies, M., Mascheck, M., Leipold, D. et al. Near-field-assisted localization: effect of size and filling factor of randomly distributed zinc oxide nanoneedles on multiple scattering and localization of light. Appl. Phys. B 122, 181 (2016). https://doi.org/10.1007/s00340-016-6456-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6456-2

Keywords

Navigation