Skip to main content
Log in

Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Narrow-linewidth tunable diode lasers are an important tool for spectroscopic instrumentation. Conventional external cavity diode lasers offer high output power and narrow linewidth. However, most external cavity diode lasers are designed as laboratory instrument and do not allow portability. In comparison, other commonly used lasers, like distributed feedback lasers (DFB) that are capable of driving a handheld device, are limited in power and show linewidths which are not sufficiently narrow for certain applications. We present new miniaturized types of tunable external cavity diode laser which overcome the drawbacks of conventional external cavity diode lasers and which preserve the advantages of this laser concept. Three different configurations are discussed in this article. The three types of miniaturized external cavity diode laser systems achieve power values of more than 50 mW within the 1.4 \(\mu\)m water vapor absorption band with excellent side-mode suppression and linewidth below 100 kHz. Typical features outstand with respect to other type of laser systems which are of extended use such as DFB laser diodes. The higher output power and the lower linewidth will enable a higher sensitivity and resolution for a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62(1), 1–20 (1991)

    Article  ADS  Google Scholar 

  2. W. Lewoczko-Adamczyk, C. Pyrlik, J. Hger, S. Schwertfeger, A. Wicht, A. Peters, G. Erbert, G. Trnkle, Opt. Express 23, 9705–9709 (2015)

    Article  ADS  Google Scholar 

  3. E. Luvsandamdin, S. Spießberger, M. Schiemangk, A. Sahm, G. Mura, A. Wicht, A. Peters, G. Erbert, G. Tränkle, Appl. Phys. B 111, 255260 (2013)

    Article  Google Scholar 

  4. J. D. Berger. Y. Zhang, J. D. Grade, H. Lee, S. Hrinya, H. Jerman, A. Fennema, A. Tselikov, D. Anthon: Proceedings of 27th European Conference on Optical Communications 2 (2001) 198–199

  5. W. Huang, R.R.A. Syms, J. Stagg, A. Lohmann, IEE Proceedings - Science. Meas. Technol. 151(2), 67–75 (2004)

    Article  Google Scholar 

  6. H. Cai, X. M. Zhang, J. Wu, D. Y. Tang, Q. X. Zhang, A. Q. Liu: Transducers 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference (2007) 1433–1436

  7. S. Rauch, J. Sacher, IEEE Photonics Technol. Lett. 27(16), 1737–1740 (2015)

    Article  ADS  Google Scholar 

  8. B. Jacobsson, V. Pasiskevicius, F. Laurell, V. Smirnov, L. Glebov: Conference on lasers and electro-optics/quantum electronics and laser science conference and photonic applications systems technologies (CTuY3) (2008)

  9. S. Stry, S. Thelen, J. Sacher, D. Halmer, P. Hering, M. Mrtz, Appl. Phys. B 85(2), 365–374 (2006)

    Article  ADS  Google Scholar 

  10. A. Elia, P.M. Lugarà, C. Di Franco, V. Spagnolo, Sensors 9, 9616–9628 (2009)

    Article  Google Scholar 

  11. J. Sacher, D. Baums, P. Panknin, W. Elsässer, E.O. Göbel, Phys. Rev. A 45(3), 1893–1905 (1992)

    Article  ADS  Google Scholar 

  12. L. Hildebrandt, R. Knispel, S. Stry, J.R. Sacher, F. Schael, Appl. Opt. 42(12), 2110–2118 (2003)

    Article  ADS  Google Scholar 

  13. V.P. Gribkovskii, Progr. Quantum Electron. 19, 41–88 (1995)

    Article  ADS  Google Scholar 

  14. F. K. Tittel, R. Lewicki, M. Jahjah, Y. Ma, P. Stefanski: 2012 Asia Communications and Photonics Conference (ACP) (2012) 1–1

  15. L. Dong, J. Wright, B. Peters, B.A. Ferguson, F.K. Tittel, S. McWhorter, Appl. Phys. B 107, 459–467 (2012)

    Article  ADS  Google Scholar 

  16. A.A. Kosterev, L. Dong, D. Thomazy, F.K. Tittel, S. Overby, Appl. Phys. B 101, 649–659 (2010)

    Article  ADS  Google Scholar 

  17. A.A. Kosterev, Y.A. Bakhirkin, R.F. Curl, F.K. Tittel, Opt. Lett. 27, 19021904 (2002)

    Article  Google Scholar 

  18. A.A. Kosterev, F.K. Tittel, D. Serebryakov, A. Malinovsky, A. Morozov, Rev. Sci. Instrum. 76, 19 (2005)

    Article  Google Scholar 

  19. P. Patimisco, G. Scamarcio, F.K. Tittel, Vincenzo Spagnolo: Sensors 14(4), 6165–6206 (2014)

    Google Scholar 

  20. M. Mordmüller, M. Köhring, W. Schade, U. Willer, Appl. Phys. B 119, 111–118 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the German Federal Ministry of Education and Research (BMBF) for the support of our research in the project CheqVAP, Grant Identifier No. 13N13402 and in the project PhotoBiosense, Grant Identifier No. 13N13822. Within this project the quartz enhanced photoacoustic experiments were done at the Institute for Energy Research and Physical Technologies at Clausthal University of Technology. For performing these measurements we specially thank Mario Mordmüller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jiménez.

Additional information

This article is part of the topical collection “Field Laser Applications in Industry and Research” guest edited by Francesco D’Amato, Erik Kerstel, and Alan Fried.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez, A., Milde, T., Staacke, N. et al. Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range. Appl. Phys. B 123, 207 (2017). https://doi.org/10.1007/s00340-017-6777-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6777-9

Navigation