Skip to main content
Log in

Nonlinear photoacoustic response of s-tetrazine as an important azadiene pigment

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Photoacoustic (PA) properties of a familiar and important azadiene pigment, 3,6-dichloro-1,2,4,5-tetrazine (DCT), are studied in toluene as solvent. Different aspects of PA signals of this pigment are compared in various frequencies of the produced sonic waves. Using a focused laser beam with 450-nm wavelength and irradiation of 300 mW, audible sonic waves with 15,500-Hz frequency are created in solvents with high densities of DCT. In low concentrations, where the laser beam transmitted from the cell, dense diffraction rings pattern are observed, which is attributed to the PA properties of this pigment. For the first time, simultaneous study of the diffraction rings pattern, optical PA z-scan, and Fourier transform analyzes results in a more comprehensive understanding of the PA phenomenon. In addition, a new method based on diffraction rings number is presented that could lead to the estimation of non-linear optical phase changes. Moreover, the audible PA signals, as a non-linear phenomenon, could be applied as a density sensor for the solution or intensity sensor for the laser beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.R. Fisher, A.J. Schissler, J.C. Schotland, Phys. Rev. E 76, 036604 (2007)

    Article  ADS  Google Scholar 

  2. F. Kong, Y.C. Chen, O. Loyd Harriet, H. Silverman Ronald, H. Ham Kim, J.M. Cannata, Appl. Phys. Lett. 94, 033902 (2009)

    Article  ADS  Google Scholar 

  3. L.V. Wang, H.I. Wu, Biomedical Optics-Principles and Imaging (Wiley, New York, 2007)

    Google Scholar 

  4. G. Muzio, A. Alippi, A. Bettucci, F. Farrelly, M. Germano, Ultrasonics 36, 553–557 (1998)

    Article  Google Scholar 

  5. E. Koushki, A. Farzaneh, Opt. Commun. 285, 1390–1393 (2012)

    Article  ADS  Google Scholar 

  6. S. Salmani, M.H. MajlesAra, M.S. Zakerhamidi, E. Safari, Dyes Pigm. 125, 132–135 (2016)

    Article  Google Scholar 

  7. J.W. Kim, E.I. Galanzha, E.V. Shashkov, H. Moon, V.P. Zharov, Nat. Nanotechnol. 4, 688–694 (2009)

    Article  ADS  Google Scholar 

  8. R. Ragu, P.S. Latha Mageshwari, M. Akilan, J.P. Angelena, S. Jerome Das, J. Mater. Sci. Mater. Electron. 30, 1670–1676 (2019)

    Article  Google Scholar 

  9. W. Li, X. Chen, Nanomedicine (London) 10, 299–320 (2015)

    Article  Google Scholar 

  10. E. Parvizi, R. Tayebee, E. Koushki, M.F. Abdizadeh, B. Maleki, P. Audebert, L. Galmiche, RSC Adv. 9, 23818–23831 (2019)

    Article  Google Scholar 

  11. R. Mohammadzadeh Kakhki, R. Tayebee, S. Hedayat, Appl. Organomet. Chem. 32, 4033 (2018)

    Article  Google Scholar 

  12. Y. Qu, P. Pander, A. Bucinskas, M. Vasylieva, Y. Tian, F. Miomandre, F.B. Dias, G. Clavier, P. Data, P. Audebert, Chem. A Euro. J. 25, 2457–2462 (2018)

    Article  Google Scholar 

  13. R. Tayebee, B. Maleki, J. Iran. Chem. Soc. 14, 1179–1188 (2017)

    Article  Google Scholar 

  14. R. Tayebee, S. Tizabi, Chin. J. Catal. 33, 962–969 (2012)

    Article  Google Scholar 

  15. E. Koushki, B. Maleki, Dyes Pigm. 164, 82–86 (2019)

    Article  Google Scholar 

  16. O. Svelto, Principles of Lasers, 5th edn. (Springer, Berlin, 2010)

    Book  Google Scholar 

  17. R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press Inc, New York, 2007)

    Google Scholar 

  18. P. Chantharasupawong, R. Philip, J. Thomas, Appl. Phys. Lett. 102, 041116 (2013)

    Article  ADS  Google Scholar 

  19. A. Pinner, A. Salomon, B. Gobel, Dtsch. Chem. Ges. 30, 1871–1890 (1897)

    Article  Google Scholar 

  20. D.J. Min, F. Miomandre, P. Audebert, J.E. Kwon, S.Y. Park, ChemSusChem 12, 503–510 (2019)

    Article  Google Scholar 

  21. M. Tutak, A. Disli, A. Alicilar, Asian J. Chem. 21, 6513 (2009)

    Google Scholar 

  22. M. Sheikbahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, Quantum Electron. 26, 760–769 (1990)

    Article  ADS  Google Scholar 

  23. E. Koushki, A. Farzaneh, S.H. Mousavi, Appl. Phys. B 99, 565–570 (2010)

    Article  ADS  Google Scholar 

  24. C.M. Nascimento, M. Alencar, S. Chavez Cerda, M. Da Silva, M.R. Meneghetti, J.M. Hichmann, J. Opt. A Pure Appl. Opt. 8, 947–951 (2006)

    Article  ADS  Google Scholar 

  25. P.N. Prasad, D.J. Williams, Introduction to Non-linear Optical Effects in Molecules and Polymers (Wiley, New York, 1991)

    Google Scholar 

  26. S.H. Mousavi, E. Koushki, H. Haratizadeh, J. Mol. Liq. 153, 124–128 (2010)

    Article  Google Scholar 

  27. L. Hou, M. Yorulmaz, N.R. Verhart, M. Orrit, Explosive formation and dynamics of vapor nanobubbles around a continuously heated gold nanosphere. New J. Phys. 17, 013050 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Deep thanks to prof. Pierre Audebert for helpful comments and providing DCT. Partial financial support from the Research Council of Hakim Sabzevari University is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Koushki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koushki, E., Tayebee, R. & Esmaeili, M. Nonlinear photoacoustic response of s-tetrazine as an important azadiene pigment. Appl. Phys. B 126, 36 (2020). https://doi.org/10.1007/s00340-020-7384-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-7384-8

Navigation