Skip to main content
Log in

Olfactory discrimination ability of South African fur seals (Arctocephalus pusillus) for enantiomers

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Using a food-rewarded two-choice instrumental conditioning paradigm we assessed the ability of South African fur seals, Arctocephalus pusillus, to discriminate between 12 enantiomeric odor pairs. The results demonstrate that the fur seals as a group were able to discriminate between the optical isomers of carvone, dihydrocarvone, dihydrocarveol, menthol, limonene oxide, α-pinene, fenchone (all p < 0.01), and β-citronellol (p < 0.05), whereas they failed to distinguish between the (+)- and (−)-forms of limonene, isopulegol, rose oxide, and camphor (all p > 0.05). An analysis of odor structure–activity relationships suggests that a combination of molecular structural properties rather than a single molecular feature may be responsible for the discriminability of enantiomeric odor pairs. A comparison between the discrimination performance of the fur seals and that of other species tested previously on the same set of enantiomers (or subsets thereof) suggests that the olfactory discrimination capabilities of this marine mammal are surprisingly well developed and not generally inferior to that of terrestrial mammals such as human subjects and non-human primates. Further, comparisons suggest that neither the relative nor the absolute size of the olfactory bulbs appear to be reliable predictors of between-species differences in olfactory discrimination capabilities. Taken together, the results of the present study support the notion that the sense of smell may play an important and hitherto underestimated role in regulating the behavior of fur seals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alasalvar C, Quantick PC, Grigor JM (1997) Aroma compounds of fresh and stored mackerel (Scomber scombrus). In: Shahidi F, Cadwallader KR (eds) Flavor and lipid chemistry of seafoods. ACS Symposium Series, vol 674, Washington DC, pp 39–54

  • Bartholomew GA (1959) Mother-young relations and the maturation of pup behaviour in the Alaska fur seal. Anim Behav 7:163–171

    Article  Google Scholar 

  • Brown RE (1985) The marine mammals: orders Cetacea, Pinnipedia, and Sirenia. In: Brown RE, MacDonald DW (eds) Social odours in mammals, vol 2. Clarendon Press, Oxford, pp 723–731

    Google Scholar 

  • Buchbauer G, Shafii-Tabatabai A (2003) Enones of (+)- and (−)-3-pinanones: influence of chirality on flavour. Flavour Fragr J 18:441–445

    Article  CAS  Google Scholar 

  • Cadwallader KR, Shahidi F (2001) Identification of potent odorants in seal blubber oil by direct thermal desorption gas chromatography olfactometry. In: Shahidi F, Finley JW (ed) Omega-3 fatty acids: chemistry, nutrition and health effects. ACS Symposium Series, vol 788. ACS, Washington, DC, pp 221–234

  • Carr WES (1988) The molecular nature of chemical stimuli in the aquatic environment. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 3–27

    Chapter  Google Scholar 

  • Clarin T, Sandhu S, Apfelbach R (2010) Odor detection and odor discrimination in subadult and adult rats for two enantiomeric odorants supported by c-fos data. Behav Brain Res 206:229–235

    Article  PubMed  CAS  Google Scholar 

  • Cunningham GB, Strauss V, Ryan PG (2008) African penguins (Spheniscus demersus) can detect dimethyl sulphide, a prey-related odour. J Exp Biol 211:3123–3127

    Article  PubMed  Google Scholar 

  • Dobson FS, Jouventin P (2003) How mothers find their pups in a colony of Antarctic fur seals. Behav Process 61:77–85

    Article  Google Scholar 

  • Gilad Y, Wiebe V, Przeworski M, Lancet D, Pääbo S (2004) Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol 2:120–125

    Article  CAS  Google Scholar 

  • Hahn I, Scherer PW, Mozell MM (1994) A mass transport model of olfaction. J Theor Biol 167:115–128

    Article  PubMed  CAS  Google Scholar 

  • Hamilton JE (1956) Scent of otariids. Nature 177:900

    Article  Google Scholar 

  • Hardy MH, Roff E, Smith TG, Ryg M (1991) Facial skin glands of ringed and gray seals, and their possible function as odoriferous organs. Can J Zool 69:189–200

    Article  Google Scholar 

  • Hinds JW, McNelly NA (1977) Aging of the rat olfactory bulb: growth and atrophy of constituent layers and changes in size and number of mitral cells. J Comp Neurol 171:345–368

    Article  Google Scholar 

  • Hoelzel AR (2002) Marine mammal biology: an evolutionary approach. Blackwell, Durham

    Google Scholar 

  • Issel-Tarver L, Rine J (1997) The evolution of mammalian olfactory receptor genes. Genetics 145:185–195

    PubMed  CAS  Google Scholar 

  • Josephson DB (1991) Seafood. In: Maarse H (ed) Volatile compounds in foods and beverages. Marcel Dekker, New York, pp 179–202

    Google Scholar 

  • Kishida T, Kubota S, Shirayama Y, Fukami H (2007) The olfactory receptor gene repertoires in secondary-adapted marine vertebrates: evidence for reduction of the functional proportions in cetaceans. Biol Lett 3:428–430

    Article  PubMed  CAS  Google Scholar 

  • Koep KSC, Hoffman LC, Dicks LMT, Slinde E (2007) Chemical composition of meat and blubber of the Cape fur seal (Arctocephalus p. pusillus). Food Chem 100:1560–1565

    Article  CAS  Google Scholar 

  • Kovacs KM (1995) Mother-pup reunions in harp seals, Phoca groenlandica—cues for the relocation of pups. Can J Zool 73:843–849

    Article  Google Scholar 

  • Kowalewsky S, Dambach M, Mauck B, Dehnhardt G (2006) High olfactory sensitivity for dimethyl sulphide in harbour seals. Biol Lett 2:106–109

    Article  PubMed  CAS  Google Scholar 

  • Laska M (2004) Olfactory discrimination ability of human subjects for enantiomers with an isopropenyl group at the chiral center. Chem Senses 29:143–152

    Article  PubMed  Google Scholar 

  • Laska M, Galizia CG (2001) Enantioselectivity of odor perception in honeybees (Apis mellifera carnica). Behav Neurosci 115:632–639

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Shepherd GM (2007) Olfactory discrimination ability of CD-1 mice for a large array of enantiomers. Neuroscience 144:295–301

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Teubner P (1999) Olfactory discrimination ability of human subjects for ten pairs of enantiomers. Chem Senses 24:161–170

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Liesen A, Teubner P (1999) Enantioselectivity of odor perception in squirrel monkeys and humans. Am J Physiol 277:R1098–R1103

    PubMed  CAS  Google Scholar 

  • Laska M, Genzel D, Wieser A (2005) The number of functional olfactory receptor genes and the relative size of olfactory brain structures are poor predictors of olfactory discrimination with enantiomers. Chem Senses 30:171–175

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Rivas Bautista RM, Höfelmann D, Sterlemann V, Hernandez Salazar LT (2007) Olfactory sensitivity for putrefaction-associated thiols and indoles in three species of non-human primate. J Exp Biol 210:4169–4178

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Svelander M, Amundin M (2008) Successful acquisition of an olfactory discrimination paradigm by South African fur seals, Arctocephalus pusillus. Physiol Behav 93:1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Lord E, Selin S, Amundin M (2010) Olfactory discrimination of aliphatic odorants in South African fur seals (Arctocephalus pusillus). J Comp Psychol 124:187–193

    Article  PubMed  Google Scholar 

  • Ling JK (1965) Functional significance of sweat glands and sebaceous glands in seals. Nature 208:560–562

    Article  Google Scholar 

  • Mecenero S, Roux JP, Underhill LG, Bester MN (2006) Diet of Cape fur seals Arctocephalus pusillus pusillus at three mainland breeding colonies in Namibia. 1. Spatial variation. Afr J Marine Sci 28:57–71

    Article  Google Scholar 

  • Miller EH (1974) Social behaviour between adult male and female New Zealand fur seals, Arctocephalus forsteri, during the breeding season. Aust J Zool 22:155–173

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Niimura Y, Nozawa M (2008) The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet 9:951–963

    Article  PubMed  CAS  Google Scholar 

  • Nevitt GA, Bonadonna F (2005) Seeing the world through the nose of a bird: new developments in the sensory ecology of procellariiform seabirds. Marine Ecol Progr Ser 287:292–295

    Google Scholar 

  • Niimura Y, Nei M (2006) Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates. J Hum Genet 51:505–517

    Article  PubMed  CAS  Google Scholar 

  • Ohloff G, Pickenhagen W, Kraft P (2011) Scent and chemistry. The molecular world of odors. Wiley, Zurich

    Google Scholar 

  • Phillips AV (2003) Behavioral cues used in reunions between mother and pup South American fur seals (Arctocephalus australis). J Mamm 84:524–535

    Article  Google Scholar 

  • Pitcher BJ, Harcourt RG, Schaal B, Charrier I (2011) Social olfaction in marine mammals: wild female Australian sea lions can identify their pup’s scent. Biol Lett 7:60–62

    Article  PubMed  Google Scholar 

  • Reep RL, Finlay BL, Darlington RB (2007) The limbic system in mammalian brain evolution. Brain Behav Evol 70:57–70

    Article  PubMed  CAS  Google Scholar 

  • Rizvanovic A (2012) Olfactory discrimination performance and long-term odor memory in Asian elephants (Elephas maximus). M.Sc. thesis, Linköping University, Sweden

  • Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 16:1395–1403

    Article  PubMed  CAS  Google Scholar 

  • Ross GJB (1972) Nuzzling behaviour in captive cape fur seals. Int Zoo Yearb 12:183–184

    Article  Google Scholar 

  • Rossiter KJ (1996) Structure-odor relationships. Chem Rev 96:3201–3240

    Article  PubMed  CAS  Google Scholar 

  • Rouquier S, Blancher A, Giorgi D (2000) The olfactory receptor gene repertoire in primates and mouse: evidence for reduction of the functional fraction in primates. Proc Natl Acad Sci USA 97:2870–2874

    Article  PubMed  CAS  Google Scholar 

  • Rubin BD, Katz LC (2001) Spatial coding of enantiomers in the rat olfactory bulb. Nat Neurosci 4:355–356

    Article  PubMed  CAS  Google Scholar 

  • Ryg M, Solberg Y, Lydersen C, Smith TG (1992) The scent of rutting male ringed seals (Phoca hispida). J Zool 226:681–689

    Article  Google Scholar 

  • Smith TD, Bhatnagar KP (2004) Microsmatic primates: reconsidering how and when size matters. Anat Rec 279B:24–31

    Article  Google Scholar 

  • Smith TD, Bhatnagar KP, Tuladhar P, Burrows AM (2004) Distribution of olfactory epithelium in the primate nasal cavity: are microsmia and macrosmia valid morphological concepts? Anat Rec 281A:1173–1181

    Article  Google Scholar 

  • Stephan H, Baron G, Frahm HD (1988) Comparative size of brains and brain components. In: Steklis HD, Erwin J (eds) Comparative primate biology, vol. 4 (Neurosciences). Alan R. Liss, New York, pp 1–38

  • Supin AY, Popov VV, Mass AM (2001) The sensory physiology of aquatic mammals. Springer, New York

    Book  Google Scholar 

  • Thewissen JGM, Nummela S (2008) Sensory evolution on the threshold Adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley

    Google Scholar 

  • Thomas JA, Kastelein RA, Supin AY (1992) Marine mammal sensory systems. Plenum Press, New York

    Book  Google Scholar 

  • Trimble M, Insley SJ (2010) Mother-offspring reunion in the South American sea lion Otaria flavescens at Isla de Lobos (Uruguay): use of spatial, acoustic and olfactory cues. Ethol Ecol Evol 22:233–246

    Article  Google Scholar 

  • Williams RW, Airey DC, Kulkarni A, Zhou G, Lu L (2001) Genetic dissection of the olfactory bulbs of mice: QTLs on four chromosomes modulate bulb size. Behav Genet 31:61–77

    Article  PubMed  CAS  Google Scholar 

  • Wyatt TD (2003) Pheromones and animal behaviour: communication by smell and taste. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Zelenitsky DK, Therrien F, Ridgely RC, McGee AR, Witme LM (2011) Evolution of olfaction in non-avian theropod dinosaurs and birds. Proc Roy Soc B 278:3625–3634

    Article  Google Scholar 

Download references

Acknowledgments

Sunna Edberg, Therese Höglin, Tova Hansson and Christina Bauer are gratefully acknowledged for invaluable help in handling and training of the animals.

Ethical standards

The experiments reported here comply with the Guide for the Care and Use of Laboratory Animals (National Institutes of Health Publication no. 86-23, revised 1985) and also with current Swedish laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Laska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Amundin, M. & Laska, M. Olfactory discrimination ability of South African fur seals (Arctocephalus pusillus) for enantiomers. J Comp Physiol A 199, 535–544 (2013). https://doi.org/10.1007/s00359-012-0759-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-012-0759-5

Keywords

Navigation