Skip to main content
Log in

Clustering of time series via non-parametric tail dependence estimation

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

We present a procedure for clustering time series according to their tail dependence behaviour as measured via a suitable copula-based tail coefficient, estimated in a non-parametric way. Simulation results about the proposed methodology together with an application to financial data are presented showing the usefulness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdous B, Ghoudi K, Khoudraji A (1999) Non-parametric estimation of the limit dependence function of multivariate extremes. Extremes 2:245–268

    Article  MathSciNet  MATH  Google Scholar 

  • Bastos J, Caiado J (2013) Clustering financial time series with variance ratio statistics. Quant Financ. doi:10.1080/14697688.2012.726736

  • Beirlant J, Goegebeur Y, Teugels J, Segers J (2004) Statistics of extremes. Wiley series in probability and statistics. Wiley, Chichester. Theory and applications, With contributions from Daniel De Waal and Chris Ferro

  • Bonanno G, Caldarelli G, Lillo F, Miccichè S, Vandewalle N, Mantegna R (2004) Networks of equities in financial markets. Eur Phys J B 38(2):363–371

    Article  Google Scholar 

  • Brechmann E (2014) Hierarchical Kendall copulas: properties and inference. Can J Stat 42(1):78–108

  • Brida J, Adrián-Risso W (2010) Hierarchical structure of the German stock market. Expert Syst Appl 37(5):3846–3852

    Article  Google Scholar 

  • Capéraà P, Fougères A-L, Genest C (1997) A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika 84(3):567–577

    Article  MathSciNet  MATH  Google Scholar 

  • Cesarone F, Scozzari A, Tardella F (2013) A new method for mean-variance portfolio optimization with cardinality constraints. Ann Oper Res 205(1):213–234

    Article  MathSciNet  MATH  Google Scholar 

  • Czado C (2010) Pair-copula constructions of multivariate copulas. In: Jaworki P, Durante F, Härdle W, Rychlik T (eds) Copula theory and its applications, Lecture notes in statistics: proceedings, vol 198, Springer, Berlin, pp 93–109

  • De Luca G, Rivieccio G, Zuccolotto P (2010) Combining random forest and copula functions: a heuristic approach for selecting assets from a financial crisis perspective. Intell Syst Account financ Manag 17(2):91–109

    Article  Google Scholar 

  • De Luca G, Zuccolotto P (2011) A tail dependence-based dissimilarity measure for financial time series clustering. Adv Data Anal Classif 5(4):323–340

    Article  MathSciNet  Google Scholar 

  • De Luca G, Zuccolotto P (2013) A conditional value-at-risk based portfolio selection with dynamic tail dependence clustering. MPRA Working Paper Series, 50129. http://mpra.ub.uni-muenchen.de/50129/

  • Durante F, Fernández-Sánchez J, Pappadà R (2014) Copulas, diagonals and tail dependence. Fuzzy Sets Syst. doi:10.1016/j.fss.2014.03.014

  • Durante F, Foscolo E (2013) An analysis of the dependence among financial markets by spatial contagion. Int J Intell Syst 28(4):319–331

    Article  Google Scholar 

  • Durante F, Foscolo E, Sabo M (2013) A spatial contagion test for financial markets. In: Kruse R, Berthold M, Moewes C, Gil M, Grzegorzewski P, Hryniewicz O (eds) Synergies of soft computing and statistics for intelligent data analysis, volume 190 of Advances in intelligent systems and computing. Springer, Berlin, pp 313–320

    Chapter  Google Scholar 

  • Durante F, Hofert M, Scherer M (2010) Multivariate hierarchical copulas with shocks. Methodol Comput Appl Probab 12(4):681–694

    Article  MathSciNet  MATH  Google Scholar 

  • Durante F, Jaworski P (2010) Spatial contagion between financial markets: a copula-based approach. Appl Stoch Models Bus Ind 26(5):551–564

    Article  MathSciNet  MATH  Google Scholar 

  • Durante F, Pappadà R, Torelli N (2013) Clustering of financial time series in risky scenarios. Adv Data Anal Classif. doi:10.1007/s11634-013-0160-4

  • Embrechts P, Klüppelberg C, Mikosch T (1997) Modelling extremal events for insurance and finance, volume 33 of Applications of mathematics (New York). Springer, Berlin

  • Frahm G, Junker M, Schmidt R (2005) Estimating the tail-dependence coefficient: properties and pitfalls. Insur Math Econ 37(1):80–100

    Article  MathSciNet  MATH  Google Scholar 

  • Genest C, Segers J (2009) Rank-based inference for bivariate extreme value copulas. Ann Stat 37(5B):2990–3022

    Article  MathSciNet  MATH  Google Scholar 

  • Gudendorf G, Segers J (2010) Extreme-value copulas. In: Jaworski P, Durante F, Härdle W, Rychlik T (eds) Copula theory and its applications, Lecture notes in statistics: proceedings, vol 198, Springer, Berlin, pp 127–145

  • Hering C, Hofert M, Mai J-F, Scherer M (2010) Constructing hierarchical Archimedean copulas with Lévy subordinators. J Multivar Anal 101(6):1428–1433

    Article  MathSciNet  MATH  Google Scholar 

  • Hubert L, Arabie P (1985) Comparing partitions. J Classif 2:193–218

    Article  Google Scholar 

  • Jaworski P (2010) Tail behaviour of copulas.In: Jaworski P, Durante F, Härdle W, Rychlik T (eds) Copula theory and its applications, volume 198 of Lecture notes in statistics: proceedings, Springer, Berlin, pp 161–186

  • Jaworski P, Durante F, Härdle WK (eds) (2013) Copulae in mathematical and quantitative finance, Lecture notes in statistics: proceedings, vol 213, Springer, Berlin

  • Jaworski P, Durante F, Härdle WK, Rychlik T (eds) (2010) Copula theory and its applications, Lecture notes in statistics: proceedings, vol 198, Springer, Berlin

  • Joe H (1997) Multivariate models and dependence concepts, volume 73 of Monographs on statistics and applied probability. Chapman & Hall, London

    Book  Google Scholar 

  • Kaufman L, Rousseeuw P (1990) Finding groups in data. Applied probability and statistics. Wiley, New York, Wiley Series in probability and mathematical statistics

  • Kruskal J (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115–129

    Article  MathSciNet  MATH  Google Scholar 

  • Longin F, Solnik B (2001) Extreme correlation of international equity markets. J Financ 56(2):649–676

    Article  Google Scholar 

  • Mantegna R (1999) Hierarchical structure in financial markets. Eur Phys J B 11(1):193–197

    Article  Google Scholar 

  • Okhrin O, Okhrin Y, Schmid W (2013) On the structure and estimation of hierarchical Archimedean copulas. J Econ 173(2):189–204

    Article  MathSciNet  Google Scholar 

  • Otranto E (2008) Clustering heteroskedastic time series by model-based procedures. Comput Stat Data Anal 52(10):4685–4698

    Article  MathSciNet  MATH  Google Scholar 

  • Pattarin F, Paterlini S, Minerva T (2004) Clustering financial time series: an application to mutual funds style analysis. Comput Stat Data Anal 47(2):353–372

    Article  MathSciNet  MATH  Google Scholar 

  • Patton A (2012) A review of copula models for economic time series. J Multivar Anal 110:4–18

    Article  MathSciNet  MATH  Google Scholar 

  • Patton A (2013) Copula methods for forecasting multivariate time series. In: Elliott G, Timmermann A (eds) Handbook of economic forecasting, vol 2. Springer, Berlin

    Google Scholar 

  • Piccolo D (1990) A distance measure for classifying ARIMA models. J Time Ser Anal 11(2):153–164

    Article  MATH  Google Scholar 

  • Pickands J (1981) Multivariate extreme value distributions. In: Proceedings of the 43rd session of the international statistical Institute, Vol 2 (Buenos Aires, 1981), vol 49, pp 859–878, 894–902

  • Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850

    Article  Google Scholar 

  • Remillard B (2010) Goodness-of-fit tests for copulas of multivariate time series. SSRN eLibrary

  • Salvadori G, De Michele C, Kottegoda NT, Rosso R (2007) Extremes in nature : an approach using copulas, volume 56 of Water science and technology Library. Springer, Dordrecht

  • Shepard RN (1962) The analysis of proximities: multidimensional scaling with an unknown distance function. I. Psychometrika 27(2):125–140

    Article  MathSciNet  MATH  Google Scholar 

  • Shepard RN (1962) The analysis of proximities: multidimensional scaling with an unknown distance function. II. Psychometrika 27:219–246

    Article  MathSciNet  Google Scholar 

  • Tola V, Lillo F, Gallegati M, Mantegna R (2008) Cluster analysis for portfolio optimization. J Econ Dyn Control 32(1):235–258

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first and second author acknowledge the support of Free University of Bozen-Bolzano, School of Economics and Management, via the project MODEX. The second author would like to thank Claudia Czado and Eike Brechmann (TU Munich, Germany) for useful comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Durante.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durante, F., Pappadà, R. & Torelli, N. Clustering of time series via non-parametric tail dependence estimation. Stat Papers 56, 701–721 (2015). https://doi.org/10.1007/s00362-014-0605-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-014-0605-7

Keywords

Mathematics Subject Classification

Navigation