Skip to main content

Advertisement

Log in

The importance of the vertical accuracy of digital elevation models in gauging inundation by sea level rise along the Valdelagrana beach and marshes (Bay of Cádiz, SW Spain)

  • Short Communication
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

The identification of potential coastal inundation caused by future sea level rise requires not only time series records from tide gauges, but also high-quality digital elevation models (DEMs). This study assesses the importance of DEM vertical accuracy in predicting inundation by sea level rise along the Valdelagrana beach and marshes of the Bay of Cádiz (SW Spain). A present-day (2000) and a projected (2100) high tide have been spatialized over a traditional (aerial photogrammetry) regional DEM of Andalusia with a horizontal spatial resolution of 10 m and a vertical accuracy of 0.68 m RMSE (root mean square error), and a LIDAR-derived DEM of the Valdelagrana study site with the same spatial resolution but a vertical accuracy of 0.205 m RMSE. The simulations are based on a bathtub model, which accounts for the effect of vertical barriers. The results reveal that the presence of infrastructures such as roads and salterns is the key to delimit the extent of water penetration during high tides in an otherwise homogeneously flat area comprising the beach and marshes of Valdelagrana. Moreover, in comparison with the highly accurate LIDAR DEM, the inundation areas derived from the lower-resolution DEM are overestimated by 72 % and 26 % for the present-day and future scenarios respectively. These findings demonstrate that DEM vertical accuracy is a critical variable in meaningfully gauging the impacts of sea level rise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilar FJ, Mills JP, Delgado J, Aguilar MA, Negreiros JG, Pérez JL (2010) Modelling vertical error in LiDAR-derived digital elevation models. ISPRS J Photogramm Remote Sens 65:103–110

    Article  Google Scholar 

  • Burbridge P (2011) Global change and the coastal challenge. In: Proc Littoral 2010 – Adapting to global change at the coast. EDP Sciences Web of Conferences, doi:10.1051/litt/201100004

  • Butler D, Davies J (2011) Urban drainage, 3rd edn. Spon Press, London

    Google Scholar 

  • Cazenave A, Llovel W (2010) Contemporary sea level rise. Annu Rev Mar Sci 2:145–173

    Article  Google Scholar 

  • Cooper MJP, Beevers MD, Oppenheimer M (2008) The potential impacts of sea level rise on the coastal region of New Jersey, USA. Clim Chang 90:475–492

    Article  Google Scholar 

  • Crowell M, Honeycutt M, Hatheway D (1999) Coastal erosion hazards study: phase one mapping. J Coastal Res SI 28:10–20

    Google Scholar 

  • Dasgupta S, LaPlante B, Meisner C, Wheeler D, Yan J (2007) The impact of sea level rise on developing countries: a comparative analysis. World Bank Policy Research Work Pap 4136

  • EEA (2010) Methods for assessing current and future coastal vulnerability to sea level rise. European Environmental Agency, Copenhagen

    Google Scholar 

  • Felicísimo A (1994) Modelos digitales del terreno. Pentalfa, Oviedo

    Google Scholar 

  • FitzGerald D, Fenster M, Argow B, Buynevich I (2008) Coastal impacts due to sea-level rise. Annu Rev Earth Planet Sci 36(1):601–647

    Article  Google Scholar 

  • Flocks J, Miner MD, Twichell DC, Lavoie DL, Kindinger J (2009) Evolution and preservation potential of fluvial and transgressive deposits on the Louisiana inner shelf: understanding depositional processes to support coastal management. Geo-Mar Lett 29(6):359–378. doi:10.1007/s00367-009-0164-4

    Article  Google Scholar 

  • Flor-Blanco G, Flor G, Pando L (2012) Evolution of the Salinas-El Espartal and Xagó beach/dune systems in north-western Spain over recent decades: evidence for responses to natural processes and anthropogenic interventions. Geo-Mar Lett (in press). doi:10.1007/s00367-012-0301-3

  • Fraile P (2011) Análisis de las problemáticas asociadas a la espacialización, evolución y representación de niveles del mar presentes y futuros en Andalucía. PhD Thesis, Universidad de Sevilla, Sevilla

  • Fraile P, Ojeda J (2009) Estudio comparativo de los enfoques global y local para el ajuste de las superficies de inundación como consecuencia de la subida del nivel del mar en los deltas del Mediterráneo. In: Nuevas contribuciones sobre geomorfología litoral. Jornadas de Geomorfología Litoral, Universidad de Huelva

  • Garcia-Gutierrez J, Gonçalves-Seco L, Riquelme-Santos JC (2011) Automatic environmental quality assessment for mixed-land zones using lidar and intelligent techniques. Expert Systems Appl 38:6805–6813

    Article  Google Scholar 

  • Garrison JR Jr, Mestas-Nuñez AM, Williams JR, Lumb LM (2012) Can beach dune ridges of the Texas Gulf Coast preserve climate signals? Geo-Mar Lett 32(3):241–250. doi:10.1007/s00367-011-0263-x

    Article  Google Scholar 

  • Gesch D (2007) Topography-based analysis of Hurricane Katrina inundation of New Orleans. In: Science and the storms: The USGS Response to the Hurricanes of 2005. United States Geological Survey, Reston

    Google Scholar 

  • Gesch D (2009) Analysis of lidar elevation data for improved identification and delineation of lands vulnerable to sea level rise. J Coastal Res SI 53:49–58

    Article  Google Scholar 

  • Gravelle G, Mimura N (2008) Vulnerability assessment of sea-level rise in Viti Levu, Fiji. Islands. Sustainability Sci 3:171–180

    Article  Google Scholar 

  • Hansen H (2010) Modelling the future coastal zone urban development as implied by the IPCC SRES and assessing the impact from sea level rise. Landsc Urban Plan 98:141–149

    Article  Google Scholar 

  • IPCC (2007) Climate change. The scientific basis. Intergovernmental panel on climate change, Cambridge. Cambridge University Press, Cambridge

    Google Scholar 

  • Kont A, Jaagus A, Aunap R, Ratas U, Rivis R (2008) Implications of sea-level rise for Estonia. J Coastal Res 24(2):423–431

    Article  Google Scholar 

  • Li Z, Zhu Q, Gold C (2005) Digital terrain modeling: principles and methodology. CRC Press, Boca Raton

    Google Scholar 

  • Mazria E, Kershner K (2007) Nation under siege: sea level rise at our doorstep. The 2030 Research Center, http://www.architecture2030.org/pdfs/nation_under_siege.pdf

  • Miner MD, Kulp MA, FitzGerald DM, Flocks JG, Weathers HD (2009) Delta lobe degradation and hurricane impacts governing large-scale coastal behavior, South-central Louisiana, USA. Geo-Mar Lett 29(6):441–453. doi:10.1007/s00367-009-0156-4

    Article  Google Scholar 

  • Mir-Gual M, Pons GX, Martín-Prieto JÁ, Roig-Munar FX, Rodríguez-Perea A (2012) Geomorphological and ecological features of blowouts in a western Mediterranean coastal dune complex: a case study of the Es Comú de Muro beach-dune system on the island of Mallorca, Spain. Geo-Mar Lett (in press). doi:10.1007/s00367-012-0298-7

  • Mitasova H, Hardin E, Overton MF, Kurum MO (2010) Geospatial analysis of vulnerable beach-foredune systems from decadal time series of lidar data. J Coastal Conserv 14(3):161–172

    Article  Google Scholar 

  • NRC (2010) Advancing the science of climate change. National Research Council, National Academies Press, Washington, DC

    Google Scholar 

  • Ojeda Zújar J, Márquez Pérez J, Gómez A (2006) Restitución analítica, estereocorrelación y Lídar para la generación de modelos digitales de terreno en marismas mareales. In: Camacho MT, Cañete JA, Lara JJ (eds) El acceso a la información espacial y nuevas tecnologías geográficas. Universidad de Granada, Granada

    Google Scholar 

  • Olsen RC (2007) Remote sensing from air and space. SOIE Press, Bellingham

    Book  Google Scholar 

  • Pe’eri S, Long B (2011) LIDAR technology applied in coastal studies and management. J Coastal Res SI 62:1–5

    Article  Google Scholar 

  • Pokharel P, Takeda M, Matsuo N (2007) Study of inundation in the coastal city due to heavy rainfall considering the effect of global warming. In: Proc World Environmental and Water Resources Congr 2007, ASCE, Tampa, FL. doi:10.1061/40927(243)94

  • Poulter B, Halpin PN (2008) Raster modelling of coastal flooding from sea-level rise. Int J Geogr Inform Sci 22:167–182

    Article  Google Scholar 

  • Raji O, Del Río L, Gracia FJ, Benavente J (2011) The use of LIDAR data for mapping coastal flooding hazard related to storms in Cádiz Bay (SW Spain). J Coastal Res SI 64:1881–1885

    Google Scholar 

  • Rowley RJ, Kostelnick JC, Braaten D, Li X, Meisel J (2007) Risk of rising sea level to population and land area. Eos Trans AGU 88(9):105–116

    Article  Google Scholar 

  • Rutigliano P, Ferraro C, Devoti R, Lanote R, Luceri V, Nardi A, Pacione R, Sciarreta C (2000) Vertical motions in the Western Mediterranean area from geodetic and geological data. In: Ext Abstr Vol 10th General Assembly WEGENER Project, San Fernando, Spain

  • Sánchez-Arcilla A, Jiménez J, Valdemoro H, Gracia V (2008) Implications of climatic change on Spanish Mediterranean low-lying coasts: the Ebro Delta case. J Coastal Res 24(2):306–316

    Article  Google Scholar 

  • Sriver RL, Urban NM, Olson R, Keller K (2012) Toward a physically plausible upper bound of sea-level rise projections. Clim Chang 115(3/4):893–902. doi:10.1007/s10584-012-0610-6

    Article  Google Scholar 

  • Thieler R (2009) Coastal sensitivity to sea level rise: a focus on the mid-Atlantic region. United States Geological Survey, Washington, DC

    Google Scholar 

  • Titus J, Narayan V (1998) The probability of sea level rise. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Titus J, Richman C (2001) Maps of lands vulnerable to sea level rise: modeled elevations along the U.S. Atlantic and Gulf Coasts. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Wu SY, Yarnal B, Fisher A (2002) Vulnerability of coastal communities to sea-level rise: a case study of Cape May County, New Jersey, USA. Climate Res 22:255–270

    Article  Google Scholar 

  • Zhang K (2011) Analysis of non-linear inundation from sea-level rise using LIDAR data: a case study for South Florida. Clim Chang 106:537–565

    Article  Google Scholar 

Download references

Acknowledgements

This research forms part of the project “Detailed Mapping and Web Dissemination of Demographic, Tourist and Environmental Data for Vulnerability Assessment Linked to Beach Erosion Along the Andalusian Coast (CSO2010-15807)” funded by the Ministry of Education and Science of Spain, and FEDER funds. The authors especially acknowledge useful comments and language corrections by three anonymous referees and the journal editors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Fraile-Jurado.

Additional information

Responsible guest editor: I. Rodríguez-Santalla

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraile-Jurado, P., Ojeda-Zújar, J. The importance of the vertical accuracy of digital elevation models in gauging inundation by sea level rise along the Valdelagrana beach and marshes (Bay of Cádiz, SW Spain). Geo-Mar Lett 33, 225–230 (2013). https://doi.org/10.1007/s00367-012-0317-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-012-0317-8

Keywords

Navigation