Skip to main content

Advertisement

Log in

Chemically oxidized biochar increases ammonium-15N recovery and phosphorus uptake in a grassland

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Soil amendment with biochar is shown to be a low-cost carbon sequestration option while its properties contribute to nutrient dynamics. The properties of biochar can be purposefully modified using different techniques including chemical oxidation. A change in biochar functionality, to an equivalent state of natural aging, could alter plant nutrient use efficiency, particularly nitrogen (N) and phosphorus (P), which however has not been examined yet. Here, we examined 15N recovery and P uptake in mixtures of clover (Trifolium repens) and ryegrass (Lolium perenne) after biochar amendment at different oxidation states (i.e., fresh, 5%OBC and 15%OBC, oxidized with 5 and 15% H2O2, respectively) and addition of 15NH4+-N and 15NO3-N. Overall, after 30 days of growth, the total 15N recovery in plant and soil was 41% greater with NH4+-N than with NO3-N addition. However, the 15N recovery from NH4+-N addition was greater in the oxidized biochar treatments than the control and fresh biochar treatments (a significant biochar × N interaction). Chemical oxidation also increased leaching of NO3-N and phosphate-P while greater plant P uptake occurred in the 15%OBC treatment with NH4+-N addition. An increase in cation exchange sites with oxidized biochar may have increased NH4+-N retention and biomass production (N uptake) and, thus, 15N recovery. The increase in P availability may further have increased plant biomass production in the 15%OBC treatment with NH4+-N. Our results suggest that oxidized biochar could increase primary productivity by increasing NH4+-N use efficiency and P availability while increasing the risk of NO3-N and phosphate-P leaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Araújo SR, Söderström M, Eriksson J, Isendahl C, Stenborg P, Demattê JAM (2015) Determining soil properties in Amazonian Dark Earths by reflectance spectroscopy. Geoderma 237–238:308–317

    Article  CAS  Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18

    Article  CAS  Google Scholar 

  • Australian Bureau of Statistics (ABS) (2016) Land management and farming in Australia, 2015–16. Available at http://www.abs.gov.au/ausstats/abs@.nsf/mf/4627.0. Accessed 5 Sep 2017

  • Beck T, Joergensen RG, Kandeler E, Makeshin E, Nuss E, Oberholzer HR, Scheu S (1997) An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol Biochem 29:1023–1032

    Article  CAS  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic and available forms of phosphorus. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Brookes PC, Landman A, Prudent G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Bruulsema TW, Duxbury JM (1996) Simultaneous measurement of soil microbial nitrogen, carbon, and carbon isotope ratio. Soil Sci Soc Am J 60:1787

    Article  CAS  Google Scholar 

  • Cassman KG, Dobermann A, Walters DT (2002) Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31:132–140

    Article  PubMed  Google Scholar 

  • Chapman HD (1965) Cation-exchange capacity. In: Black CA (ed) Methods of soil analysis—chemical and microbiological properties. Agronomy 9:891–901

    CAS  Google Scholar 

  • Chassé AW, Ohno T (2016) Higher molecular mass organic matter molecules compete with orthophosphate for adsorption to iron (oxy)hydroxide. Environ Sci Technol 50:7461–7469

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zhang W, Gurmesa GA, Zhu X, Li D, Mo J (2017) Phosphorus addition affects soil nitrogen dynamics in a nitrogen-saturated and two nitrogen-limited forests. Eur J Soil Sci 68:472–479

    Article  CAS  Google Scholar 

  • Cheng C-H, Lehmann J (2009) Ageing of black carbon along a temperature gradient. Chemosphere 75:1021–1027

    Article  CAS  PubMed  Google Scholar 

  • Cheng C-H, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72:1598–1610

    Article  CAS  Google Scholar 

  • Clough T, Condron L, Kammann C, Müller C (2013) A review of biochar and soil nitrogen dynamics. Agronomy 3:275–293

    Article  CAS  Google Scholar 

  • de la Rosa JM, Rosado M, Paneque M, Miller AZ, Knicker H (2018) Effects of aging under field conditions on biochar structure and composition: implications for biochar stability in soils. Sci Total Environ 613–614:969–976

    Article  CAS  PubMed  Google Scholar 

  • Donn MJA, Menzies NWA (2005) The effect of ionic strength variation and anion competition on the development of nitrate accumulations in variable charge subsoils. Australian J Soil Res 43:43–50

    Article  Google Scholar 

  • Eick MJ, Brady WD, Lynch CK (1999) Charge properties and nitrate adsorption of some acid southeastern soils. J Environ Qual 28:138–144

    Article  CAS  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seablom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  PubMed  Google Scholar 

  • Esfandbod M, Phillips IR, Miller B, Rashti MR, Lan ZM, Srivastava P, Singh B, Chen CR (2017) Oxidized acidic biochar increases nitrogen retention and decreases ammonia volatilization in alkaline bauxite residue sand. Ecol Eng 98:157–165

    Article  Google Scholar 

  • Gao S, DeLuca T, Cleveland C (2019) Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: a meta-analysis. Sci Total Environ 654:463–472

    Article  CAS  PubMed  Google Scholar 

  • Gronwald M, Helfrich M, Don A, Fuß R, Well R, Flessa H (2018) Application of hydrochar and pyrochar to manure is not effective for mitigation of ammonia emissions from cattle slurry and poultry manure. Biol Fertil Soils 54:451–465

    Article  CAS  Google Scholar 

  • Güereña D, Lehmann J, Hanley K, Enders A, Hyland C, Riha S (2013) Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant Soil 365:239–254

    Article  CAS  Google Scholar 

  • Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Møller IS, White P (2011) Functions of macronutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, London, pp 191–248

    Google Scholar 

  • He M, Dijkstra FA (2015) Phosphorus addition enhances loss of nitrogen in a phosphorus-poor soil. Soil Biol Biochem 82:99–106

    Article  CAS  Google Scholar 

  • Hiemstra T, Mia S, Duhaut PB, Molleman B (2013) Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate. Environ Sci Technol 47:9182–9189

    Article  CAS  PubMed  Google Scholar 

  • Hüppi R, Neftel A, Lehmann MF, Krauss M, Six S, Leifeld J (2016) N use efficiencies and N2O emissions in two contrasting, biochar amended soils under winter wheat—cover crop—sorghum rotation. Environ Res Lett 11:84013

    Article  CAS  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2018) Mitigation pathways compatible with 1.5°C in the context of sustainable development in global warming of 1.5°C. pp 93–174

  • Isbell R (2002) The Australian soil classification, 4th edn. CSIRO Publishing, Collingwood, Vicotira, Australia, pp 1–144

    Book  Google Scholar 

  • Jackson ML (1958) Soil chemical analysis. Prentice-Hall, Inc, Englewood Cliffs, NJ

    Google Scholar 

  • Jeffery S, Abalos D, Spokas K, Verheijen FGA (2015) Biochar effects on crop yields. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science, technology and implementation. Earthscan, London, pp 301–326

  • Jeffery S, Abalos D, Prodana M, Bastos A, van Groenigen JW, Hungate B, Verheijen F (2017) Biochar boosts tropical but not temperate crop yields. Environ Res Lett 12:053001

  • Jin Z, Chen X, Chen C, Tao P, Han Z, Zhang X (2016) Biochar impact on nitrate leaching in upland red soil, China. Environ Earth Sci 75:1–10

    Article  Google Scholar 

  • Jones DL, Rousk J, Edwards-Jones G, DeLuca TH, Murphy DV (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124

    Article  CAS  Google Scholar 

  • Keith A, Singh B, Dijkstra FA, Van Ogtrop F (2016) Biochar field study: greenhouse gas emissions, productivity, and nutrients in two soils. Agron J 108:1–11

    Article  CAS  Google Scholar 

  • Kookana RS, Sarmah AK, Van Zwieten L, Krull E, Singh B (2011) Biochacar application to soil: agronomic and environmental benefits and unintended consequences. Adv Agron 112:103–143

    Article  CAS  Google Scholar 

  • Laird D, Fleming P, Wang B, Horton R, Karlen D (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158:436–442

    Article  CAS  Google Scholar 

  • Lassaletta L, Billen G, Grizzetti B, Angade J, Garnier J (2014) 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ Res Lett 9:105011

    Article  Google Scholar 

  • Lawrinenko M, Laird DA, Johnson RL, Johnson RL, Jing D (2016) Accelerated aging of biochars: impact on anion exchange capacity. Carbon 103:217–227

    Article  CAS  Google Scholar 

  • Lee SCK, Rosenani AB, Ishak CF, Rahim KA, Meyer-Aurich A (2017) 15N-labelled fertiliser recovery by maize (Zea mays L.) and leaching of nutrients as influenced by oil palm empty fruit bunch biochar in a mini-lysimeter under controlled tropical environment. Arch Agron Soil Sci 63:1711–1724

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O'Neill B, Skjemstad JO, Thies J, Luizão FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719

    Article  CAS  Google Scholar 

  • Madiba OF, Solaiman ZM, Carson JK, Murphy DV (2016) Biochar increases availability and uptake of phosphorus to wheat under leaching conditions. Biol Fertil Soils 52:439–446

    Article  CAS  Google Scholar 

  • Magdoff FR, Bartlett RJ (1985) Soil pH buffering revisited. Soil Sci Soc Am J 49:145–148

    Article  Google Scholar 

  • Mao J-D, Johnson RL, Lehmann J, Olk DC, Veves EG, Thompson ML, Schmidt-Rohr (2012) Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration. Environ Sci Technol 46:9571–9576

    Article  CAS  PubMed  Google Scholar 

  • Mehnaz KR, Dijkstra FA (2016) Denitrification and associated N2O emissions are limited by phosphorus availability in a grassland soil. Geoderma 284:34–41

    Article  CAS  Google Scholar 

  • Mia S, Dijkstra FA, Singh B (2017a) Long-term aging of biochar: a molecular understanding with agricultural and environmental implications. Adv Agron 141:1–51

    Article  Google Scholar 

  • Mia S, Dijkstra FA, Singh B (2017b) Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium. Environ Sci Technol 51:8359–8367

    Article  CAS  PubMed  Google Scholar 

  • Mia S, Singh B, Dijkstra FA (2017c) Oxidized biochar affects gross nitrogen mineralization and recovery: a 15N study in two contrasting soils. GCB Bioenergy 9:1196–1206

    Article  CAS  Google Scholar 

  • Mia S, Dijkstra FA, Singh B (2018) Enhanced biological nitrogen fixation and competitive advantage of legumes in mixed pastures diminish with biochar aging. Plant Soil 424:639–651

    Article  CAS  Google Scholar 

  • Neumann G, Römheld V (2011) Rhizosphere chemistry in relation to plant nutrition. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Presss, Elsevier Ltd., Tokyo, pp 347–368

    Google Scholar 

  • Prendergast-Miller MT, Duvalla M, Sohia SP (2014) Biochar–root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Eur J Soil Sci 65:173–185

    Article  CAS  Google Scholar 

  • Schneider F, Haderlein SB (2016) Potential effects of biochar on the availability of phosphorus—mechanistic insights. Geoderma 277:83–90

    Article  CAS  Google Scholar 

  • Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen Z, Zhang W, Zhang F (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156:997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A (2010) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual 39:1224–1235

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Dolk MM, Shen Q, Camps-Arbestain M (2017) Biochar pH, electrical conductivity and liming potential. In: Singh B, Camps-Arbestain M, Lehmann J (eds) Biochar: a guide to analytical methods, 1st edn. CRSIRO Publishing, Melbourne, Australia, pp 23–38

    Chapter  Google Scholar 

  • Sorrenti G, Masiello CA, Dugan B, Toselli M (2016) Biochar physico-chemical properties as affected by environmental exposure. Sci Total Environ 563–564:237–246

    Article  CAS  PubMed  Google Scholar 

  • Stark JM, Hart SC (1996) Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitrogen-15 analysis. Soil Sci Soc Am J 60:1846

    Article  CAS  Google Scholar 

  • Steiner C, Glaser B, Teixeira WG, Lehmann J, Blum WEH, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J Plant Nutr Soil Sci 171:893–899

    Article  CAS  Google Scholar 

  • Stevens PA, Harrison AF, Jones HE, Williams TG, Hughes S (1993) Nitrate leaching from a Sitka spruce plantation and the effect of fertilization with phosphorus and potassium. For Ecol Manag 58:233–247

    Article  Google Scholar 

  • Teutscherova N, Vazquez E, Masaguer A, Navas M, Scow KM, Schmidt R, Benito M (2017) Comparison of lime- and biochar-mediated pH changes in nitrification and ammonia oxidizers in degraded acid soil. Biol Fertil Soils 53(7):811–821

    Article  CAS  Google Scholar 

  • van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  CAS  Google Scholar 

  • Ventura M, Sorrenti G, Panzacchi P, Goerge E, Tonon G (2013) Biochar reduces short-term nitrate leaching from a horizon in an apple orchard. J Environ Qual 42:76

    Article  CAS  PubMed  Google Scholar 

  • Viscarra Rossel RA, Cattle SR, Ortega A, Fouad A (2009) In situ measurements of soil colour, mineral composition and clay content by vis-NIR spectroscopy. Geoderma 150:253–266

    Article  CAS  Google Scholar 

  • Wang B, Lehmann J, Hanley K, Hestrin R, Enders A (2015) Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. Chemosphere 138:120–126

    Article  CAS  PubMed  Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rilling MC (2007) Mycorrhizal responses to biochar in soil—concepts and mechanisms. Plant Soil 300:9–20

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR (2012) Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89:1467–1471

    Article  CAS  PubMed  Google Scholar 

  • Zhang KL, Chen L, Li Y, Brookes PC, Xu JM, Luo Y (2017) The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biol Fertil Soils 53(1):77–87

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Claudia Keitel for her help in analyzing our samples.

Funding

Shamim recognizes the funding of the Ph.D. project by The University of Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamim Mia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mia, S., Singh, B. & Dijkstra, F.A. Chemically oxidized biochar increases ammonium-15N recovery and phosphorus uptake in a grassland. Biol Fertil Soils 55, 577–588 (2019). https://doi.org/10.1007/s00374-019-01369-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-019-01369-4

Keywords

Navigation