Skip to main content

Advertisement

Log in

Diversity and co-occurrence network modularization of bacterial communities determine soil fertility and crop yields in arid fertigation agroecosystems

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Irrigation and fertilization practices can improve crop productivity in agroecosystems; however, the role of soil biodiversity in regulating crop production is not well understood. This restricts our ability to understand how changes in soil biodiversity impact soil function and crop productivity. To address this, a 4-year field experiment was conducted in China using three levels of irrigation [high (400 mm), medium (300 mm), and low (200 mm)] and two levels of fertilization [high (600 kg/ha P2O5 + 300 kg/ha urea) and low (300 kg/ha P2O5 + 150 kg/ha urea)] in arid farmland, to investigate maize production, soil properties, bacterial and fungal communities (diversity, compositions, N-cycling potentials, and co-occurrence networks), and their associations. The results showed that irrigation and fertilization had significant effects on bacterial and fungal community diversity, N-cycling potentials, and co-occurrence network patterns during maize growth. The combined treatment of medium irrigation and low fertilization resulted in higher maize yields, bacterial diversity, nitrification, ammoxidation, N-fixation potentials, and network modularity, compared with the other treatments. Strong and positive associations were observed between the soil N-cycling potentials, maize yields, and bacterial diversity; soils supporting a large number of bacterial taxa with co-occurrence network modularity had high soil nutrient levels (organic C and inorganic N) and maize yields. Structural equation modeling demonstrated that bacteria exhibited higher contribution to soil fertility and maize yields than fungi, and irrigation and fertilization indirectly affected microbial functions by altering bacterial diversity and network modularization, which also affected soil fertility and maize yields. These results highlight the importance of microbial diversity and their co-occurrence networks for maintaining soil fertility and crop production and will improve future irrigation and fertilization practices in arid agroecosystems and provide guidance for sustainable crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barberán A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6:343–351

    Article  PubMed  Google Scholar 

  • Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511

    Article  CAS  PubMed  Google Scholar 

  • Benizri E, Piutti S, Verger S, Pages L, Vercambre G, Poessel JL, Michelot P (2005) Replant diseases: bacterial community structure and diversity in peach rhizosphere as determined by metabolic and genetic fingerprinting. Soil Biol Biochem 37:1738–1746

    Article  CAS  Google Scholar 

  • Bharti N, Barnawal D, Maji D, Kalra A (2015) Halotolerant PGPRs prevent major shifts in indigenous microbial community structure under salinity stress. Microb Ecol 70:196–208

    Article  CAS  PubMed  Google Scholar 

  • Bonkowski M, Roy J (2005) Soil microbial diversity and soil functioning affect competition among grasses in experimental microcosms. Oecologia 143:232–240

    Article  PubMed  Google Scholar 

  • Chaffron S, Rehrauer H, Pernthaler J, von Mering C (2010) A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res 20:947–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Ma KM (2016) Mycorrhizal fungi in urban environments: diversity, mechanism, and application. Acta Ecol Sin 36:4221–4232

    Google Scholar 

  • Chen J, Nan J, Xu D, Mo L, Zheng Y, Chao L, Qu H, Guo Y, Li F, Bao Y (2020) Response differences between soil fungal and bacterial communities under opencast coal mining disturbance conditions. CATENA 194:104779

    Article  Google Scholar 

  • Cui YX, Fang LC, Guo XB, Wang X, Zhang YJ, Li PF, Zhang XC (2018) Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China. Soil Biol Biochem 116:11–21

    Article  CAS  Google Scholar 

  • DeForest JL, Zak DR, Pregitzer KS, Burton AJ (2004) Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Sci Soc Am J 68:132–138

    Article  CAS  Google Scholar 

  • Deng Y, Jiang YF, Yang YF, He ZL, Luo F, Zhou JZ (2012) Molecular ecological network analyses. Bmc Bioinformatics 13:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Zhang P, Qin YJ, Tu QC, Yang YF, He ZL, Schadt CW, Zhou JZ (2016) Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation. Environ Microbiol 18:205–218

    Article  CAS  PubMed  Google Scholar 

  • Duc L, Noll M, Meier BE, Buergmann H, Zeyer J (2009) High diversity of diazotrophs in the forefield of a receding alpine glacier. Microb Ecol 57:179–190

    Article  PubMed  Google Scholar 

  • Fan KK, Delgado-Baquerizo M, Guo XS, Wang DZ, Zhu YG, Chu HY (2020) Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. ISME J 15:550–561

    Article  PubMed  Google Scholar 

  • Fargione JE, Tilman D (2005) Diversity decreases invasion via both sampling and complementarity effects. Ecol Lett 8:604–611

    Article  Google Scholar 

  • Feng M, Adams JM, Fan KK, Shi Y, Sun R, Wang DZ, Guo XS, Chu HY (2018) Long-term fertilization influences community assembly processes of soil diazotrophs. Soil Biol Biochem 126:151–158

    Article  CAS  Google Scholar 

  • Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017

    Article  CAS  PubMed  Google Scholar 

  • Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev 63:433–462

    Article  Google Scholar 

  • Franklin RB, Mills AL (2006) Structure and functional responses of a sewage microbial community to dilution-induced reductions in diversity. Microb Ecol 52:280–288

    Article  PubMed  Google Scholar 

  • He JZ, Ge Y, Xu ZH, Chen CG (2009) Linking soil bacterial diversity to ecosystem multifunctionality using backward-elimination boosted trees analysis. J Soil Sediment 9:547–554

    Article  CAS  Google Scholar 

  • Huang XQ, Zhou X, Zhang JB, Cai ZC (2019) Highly connected taxa located in the microbial network are prevalent in the rhizosphere soil of healthy plant. Biol Fertil Soils 55:299–312

    Article  Google Scholar 

  • Jung J, Yeom J, Kim J, Han J, Lim HS, Park H, Hyun S, Park W (2011) Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils. Res Microbiol 162:1018–1026

    Article  CAS  PubMed  Google Scholar 

  • Krakat N, Schmidt S, Scherer P (2011) Potential impact of process parameters upon the bacterial diversity in the mesophilic anaerobic digestion of beet silage. Biores Technol 102:5692–5701

    Article  CAS  Google Scholar 

  • Levy-Booth DJ, Winder RS (2010) Quantification of nitrogen reductase and nitrite reductase genes in soil of thinned and clear-cut Douglas-fir stands by using real-time PCR. Appl Environ Microbiol 76:7116–7125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Tang J, Che S, Wen Y, Sun W, Zhao B (2015) Effect of organic and inorganic fertilizer on the emission of CO2 and N2O from the summer maize field in the North China Plain. Sci Agric Sin 48:4381–4389

    CAS  Google Scholar 

  • Li JB, Li CN, Kou YP, Yao MT, He ZL, Li XZ (2020a) Distinct mechanisms shape soil bacterial and fungal co-occurrence networks in a mountain ecosystem. Fems Microbiol Ecol 96:fiaa030

    Article  CAS  PubMed  Google Scholar 

  • Li XX, Zhang Q, Ma J, Yang YJ, Wang YF, Fu C (2020b) Flooding irrigation weakens the molecular ecological network complexity of soil microbes during the process of dryland-to-paddy conversion. Int J Env Res Pub He 17:561

    Article  CAS  Google Scholar 

  • Li SL, Gang DG, Zhao SJ, Qi WX, Liu HJ (2021) Response of ammonia oxidation activities to water-level fluctuations in riparian zones in a column experiment. Chemosphere 269:128702

    Article  CAS  PubMed  Google Scholar 

  • Liu FC, Xing SJ, Ma HL, Du ZY, Ma BY (2014) Effects of inoculating plant growth-promoting rhizobacteria on the biological characteristics of walnut (Juglans regia) rhizosphere soil under drought condition. J Appl Ecol 25:1475–1482

    CAS  Google Scholar 

  • Liu Z, Liu P, Jia X, Cheng Y, Dong S, Zhao B, Zhang J, Yang J (2015) Effects of irrigation and fertilization on soil microbial properties in summer maize field. J Appl Ecol 26:113–121

    Google Scholar 

  • Liu W, Zhang J, Qiu C, Bao Y, Feng Y, Lin X (2020a) Study on community assembly processes under paddy-upland rotation. Soil 52:710–717

    Google Scholar 

  • Liu WB, Ling N, Guo JJ, Ruan Y, Zhu C, Shen QR, Guo SW (2020b) Legacy effects of N inputs on bacterial diversity of the rhizosphere soil. Biol Fertil Soils 56:583–596

    Article  Google Scholar 

  • Liu Z, Guo Q, Feng ZY, Liu ZD, Li HY, Sun YF, Liu CS, Lai HX (2020c) Long-term organic fertilization improves the productivity of kiwifruit (Actinidia chinensis Planch.) through increasing rhizosphere microbial diversity and network complexity. Appl Soil Ecol 147:103426

    Article  Google Scholar 

  • Merila P, Malmivaara-Lamsa M, Spetz P, Stark S, Vierikko K, Derome J, Fritze H (2010) Soil organic matter quality as a link between microbial community structure and vegetation composition along a successional gradient in a boreal forest. Appl Soil Ecol 46:259–267

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:678–681

    Article  Google Scholar 

  • Nannipieri P, Ascher-Jenull J, Ceccherini MT, Pietramellara G, Renella G, Schloter M (2020) Beyond microbial diversity for predicting soil functions: a mini review. Pedosphere 30:5–17

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2, chemical and microbial properties. Agronomy Society of America, Madison, pp 539–552

    Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Sánchez-Cañizares C, Jorrín B, Poole PS, Tkacz A (2017) Understanding the holobiont: The interdependence of plants and their microbiome. Curr Opin Microbiol 38:188–196

    Article  PubMed  Google Scholar 

  • Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, Richter A, Eberl L, Zechmeister-Boltenstern S, Riedel K (2012) Who is who in litter decomposition metaproteomics reveals major microbial players and their biogeochemical functions. ISME J 6:1749–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, de Gruyter J, de Hoog GS, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EBG, Kohlmeyer J, Kruys Å, Li YM, Lücking R, Lumbsch HT, Marvanová L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJL, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Plata ER, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JHC, Yonezawa H, Zhang Y, Spatafora JW (2009) A class-wide phylogenetic assessment of Dothideomycetes. Stud Mycol 64:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen XY, Zhang LM, Shen JP, Li LH, Yuan CL, He JZ (2011) Nitrogen loading levels affect abundance and composition of soil ammonia oxidizing prokaryotes in semiarid temperate grassland. J Soil Sediment 11:1243–1252

    Article  CAS  Google Scholar 

  • Spietz RL, Williams CM, Rocap G, Horner-Devine MC (2015) A dissolved oxygen threshold for shifts in bacterial community structure in a seasonally hypoxic estuary. PLoS ONE 10:e0135731

    Article  PubMed  PubMed Central  Google Scholar 

  • Szukics U, Abell GCJ, Hoedl V, Mitter B, Sessitsch A, Hackl E, Zechmeister-Boltenstern S (2010) Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil. Fems Microbiol Ecol 72:395–406

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Anslan S, Bahram M, Põlme S, Riit T, Liiv I, Kõljalg U, Kisand V, Nilsson H, Hildebrand F, Bork P, Abarenkov K (2015) Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10:1–43

    Article  Google Scholar 

  • Upton RN, Sielaff AC, Hofmockel KS, Xu X, Polley HW, Wilsey BJ (2020) Soil depth and grassland origin cooperatively shape microbial community co-occurrence and function. Ecosphere 11:e02973

    Article  Google Scholar 

  • Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Wang Z, Johnston PR, Takamatsu S, Spatafora JW, Hibbett DS (2006) Toward a phylogenetic classification of the Leotiomycetes based on rDNA data. Mycologia 98:1065–1075

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wang B, Dong WW, Hu XK (2016a) Co-acclimation of bacterial communities under stresses of hydrocarbons with different structures. Sci Rep 6:34588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhang R, Zheng Q, Deng Y, Van Nostrand JD, Zhou JZ, Jiao NZ (2016b) Bacterioplankton community resilience to ocean acidification: evidence from microbial network analysis. Ices J Mar Sci 73:865–875

    Article  Google Scholar 

  • Werner D, Newton WE (2005) Nitrogen fixation in agriculture, forestry, ecology, and the environment. Springer, Dordrecht

    Book  Google Scholar 

  • Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N (2009) Initial community evenness favours functionality under selective stress. Nature 458:623–626

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Zeng J, Zhu Q, Zhang Z, Lin X (2017) pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution. Sci Rep 7:40093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu ZF, Hu R, Xiong P, Wan C, Cao G, Liu Q (2010) Initial soil responses to experimental warming in two contrasting forest ecosystems, Eastern Tibetan Plateau, China: nutrient availabilities, microbial properties and enzyme activities. Appl Soil Ecol 46:291–299

    Article  Google Scholar 

  • Xue C, Hao YW, Pu XW, Penton CR, Wang Q, Zhao MX, Zhang BZ, Ran W, Huang QW, Shen QR, Tiedje JM (2019) Effect of LSU and ITS genetic markers and reference databases on analyses of fungal communities. Biol Fertil Soils 55:79–88

    Article  CAS  Google Scholar 

  • Yao TY, Chen RR, Zhang JW, Feng YZ, Huang MS, Lin XG (2020) Divergent patterns of microbial community composition shift under two fertilization regimes revealed by responding species. Appl Soil Ecol 154:103590

    Article  Google Scholar 

  • Zeng J, Liu XJ, Song L, Lin XG, Zhang HY, Shen CC, Chu HY (2016) Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol Biochem 92:41–49

    Article  CAS  Google Scholar 

  • Zhang C, Liu GB, Song LZ, Wang J, Guo L (2018a) Interactions of soil bacteria and fungi with plants during long-term grazing exclusion in semiarid grasslands. Soil Biol Biochem 124:47–58

    Article  CAS  Google Scholar 

  • Zhang KR, Cheng XL, Shu X, Liu Y, Zhang QF (2018b) Linking soil bacterial and fungal communities to vegetation succession following agricultural abandonment. Plant Soil 431:19–36

    Article  CAS  Google Scholar 

  • Zhang C, Wang J, Liu GB, Song LZ, Fang LC (2019) Impact of soil leachate on microbial biomass and diversity affected by plant diversity. Plant Soil 439:505–523

    Article  CAS  Google Scholar 

  • Zhou YP, Bastida F, Zhou B, Sun YF, Gu T, Li SQ, Li YK (2020) Soil fertility and crop production are fostered by micro-nano bubble irrigation with associated changes in soil bacterial community. Soil Biol Biochem 141:107663

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the “Light of the West” Cross Team Key Laboratory Cooperative Research Project of Chinese Academy of Science; Natural Science Basic Research Program of Shaanxi Province (2019KJXX-081; 2021JM-605); the National Natural Sciences Foundation of China (41771554, 51609237, 41807521 ); and the National Key Research and Development Program of China (2016YFC0501707).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Zhang or Guobin Liu.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1339 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Z., Li, J., Wang, J. et al. Diversity and co-occurrence network modularization of bacterial communities determine soil fertility and crop yields in arid fertigation agroecosystems. Biol Fertil Soils 57, 809–824 (2021). https://doi.org/10.1007/s00374-021-01571-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-021-01571-3

Keywords

Navigation