Skip to main content
Log in

Unprecedented low twentieth century winter sea ice extent in the Western Nordic Seas since A.D. 1200

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We reconstructed decadal to centennial variability of maximum sea ice extent in the Western Nordic Seas for A.D. 1200–1997 using a combination of a regional tree-ring chronology from the timberline area in Fennoscandia and δ18O from the Lomonosovfonna ice core in Svalbard. The reconstruction successfully explained 59% of the variance in sea ice extent based on the calibration period 1864–1997. The significance of the reconstruction statistics (reduction of error, coefficient of efficiency) is computed for the first time against a realistic noise background. The twentieth century sustained the lowest sea ice extent values since A.D. 1200: low sea ice extent also occurred before (mid-seventeenth and mid-eighteenth centuries, early fifteenth and late thirteenth centuries), but these periods were in no case as persistent as in the twentieth century. Largest sea ice extent values occurred from the seventeenth to the nineteenth centuries, during the Little Ice Age (LIA), with relatively smaller sea ice-covered area during the sixteenth century. Moderate sea ice extent occurred during thirteenth–fifteenth centuries. Reconstructed sea ice extent variability is dominated by decadal oscillations, frequently associated with decadal components of the North Atlantic Oscillation/Arctic Oscillation (NAO/AO), and multi-decadal lower frequency oscillations operating at ~50–120 year. Sea ice extent and NAO showed a non-stationary relationship during the observational period. The present low sea ice extent is unique over the last 800 years, and results from a decline started in late-nineteenth century after the LIA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • ACIA (2004) Impacts of a warming Arctic. Cambridge University Press, Cambridge

    Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19(6):716–723

    Article  Google Scholar 

  • Alexander MA, Bhatt U, Walsh J, Timlin M, Miller J, Scott J (2004) The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J Clim 17(5):890–905. doi:10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO;2

    Article  Google Scholar 

  • Alexandersson H, Schmith T, Iden K, Tuomenvirta H (1998) Long-term variations of the storm climate over NW Europe. Glob Atmos Ocean Syst 6:97–120

    Google Scholar 

  • Bengtsson L, Semenov VA, Johannessen OM (2004) The early twentieth-century warming in the Arctic—a possible mechanism. J Clim 17:4045–4057

    Article  Google Scholar 

  • Briffa KR, Jones PD, Pilcher JR, Hughes MK (1988) Reconstructing summer temperatures in northern Fennoscandinavia back to A.D. 1700 using tree-ring data from Scots pine. Arct Antarct Alp Res 20(4):385–394

    Google Scholar 

  • Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlen W, Zetterberg P, Eronen M (1992) Fennoscandian summers from A.D. 500: temperature changes on short and long timescales. Clim Dyn 7:111–119

    Article  Google Scholar 

  • Briffa KR, Jones PD, Schweingruber FH, Karlen W, Shiyatov SG (1996) Tree-ring variables as proxy-climate indicators: problems with low-frequency signals. In: Jones PD, Bradley RS, Jouzel J (eds) Climate variations and forcing mechanisms of the last 2000 years. Springer, Berlin, pp 9–41

    Google Scholar 

  • Briffa KR, Osborn TJ, Schweingruber FH (2004) Large-scale temperature inferences from tree rings: a review. Glob Planet Change 40:11–26

    Article  Google Scholar 

  • Burg JP (1978) A new analysis technique for time series data. In: Childers DG (ed) Modern spectrum analysis. IEEE Press, New York, pp 42–48

    Google Scholar 

  • Cavalieri DJ (2002) A link between Fram Strait sea ice export and atmospheric planetary wave phase. Geophys Res Lett 29(12):1614. doi:10.1029/2002GL014684

    Article  Google Scholar 

  • Comiso JC (2006) Abrupt decline in the Arctic winter sea ice cover. Geophys Res Lett 33:L18504. doi:10.1029/2006GL027341

    Article  Google Scholar 

  • Comiso JC, Nishio F (2008) Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J Geophys Res 113:C02S07. doi:10.1029/2007JC004257

    Article  Google Scholar 

  • Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. J Geophys Res 35:L01703. doi:10.1029/2007GL031972

    Google Scholar 

  • Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bull 41:45–53

    Google Scholar 

  • Cubasch U, Voss R, Hegerl GC, Waszkewitz J, Crowley TJ (1997) Simulation of the influence of solar radiation variations on the global climate with an ocean atmosphere general circulation model. Clim Dyn 13:757–767

    Article  Google Scholar 

  • Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676

    Article  Google Scholar 

  • Deser C, Teng H (2008) Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing, 1979–2007. Geophys Res Lett 35:L02504. doi:10.1029/2007GL032023

    Article  Google Scholar 

  • Deser C, Walsh JE, Timlin MS (2000) Arctic sea ice variability in the context of recent atmospheric circulation trends. J Clim 13:617–633

    Article  Google Scholar 

  • Dickson RR, Meincke J, Malmberg SA, Lee AJ (1988) The great salinity anomaly in the northern North Atlantic 1968–1982. Prog Oceanogr 20:103–151

    Article  Google Scholar 

  • Dickson RR et al (2000) The Arctic Ocean response to the North Atlantic oscillation. J Clim 13:2671–2696

    Article  Google Scholar 

  • Divine DV, Dick C (2006) Historical variability of sea ice edge position in the Nordic Seas. J Geophys Res 111:C01001. doi:10.1029/2004JC002851

    Article  Google Scholar 

  • Erlandsson S (1936) Dendrochronological studies, report 23. Stockholms Högskolas Geokronological Institute, Uppsala

    Google Scholar 

  • Eronen M, Zetterberg P, Briffa KR, Lindholm M, Meriläinen J, Timonen M (2002) The supra-long Scots pine tree-ring record for Finnish Lapland. Part 1. Chronology construction and initial inferences. Holocene 12(6):673–680

    Article  Google Scholar 

  • Fischer H, Werner M, Wagenbach D, Schwager M, Thorsteinnson T, Wilhelms F, Kipfstuhl J, Sommer S (1998) Little ice age clearly recorded in northern Greenland ice-cores. Geophys Res Lett 25:1749–1752

    Article  Google Scholar 

  • Fritts HC (1962) An approach to dendroclimatology: screening by means of multiple regression techniques. J Geophys Res 67:1413–1420

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Fritts HC, Swetnam TW (1989) Dendroecology: a tool for evaluating variations in past and present forest environments. Adv Ecol Res 19:111–188

    Article  Google Scholar 

  • Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson AW, Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic time series. Rev Geophys 40(1):3-1–3-41. doi:10.1029/2000RG000092

    Article  Google Scholar 

  • Gleissberg W (1944) A table of secular variations of the solar cycle. Terr Magn Atm Electr 49:243–244

    Article  Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlin Process Geophys 11:561–566

    Article  Google Scholar 

  • Grotefendt K, Logemann K, Quadfasel D, Ronski S (1998) Is the Arctic Ocean warming? J Geophys Res 103(C12):27679–27687

    Article  Google Scholar 

  • Hammer C, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup N, Steffensen JP (2001) The paleoclimatic record from a 345-m long ice-core from the Hans Tausen Iskappe. Meddelelser om Grønland Geoscience 39:87–95

    Google Scholar 

  • Helama S, Lindholm M, Timonen M, Meriläinen J, Eronen M (2002) The supra-long Scots pine tree-ring record for Finnish Lapland. Part 2. Interannual to centennial variability in summer temperatures for 7,500 years. Holocene 12(6):681–687

    Article  Google Scholar 

  • Hilmer M, Jung T (2000) Evidence for a recent change in the link between the North Atlantic oscillation and Arctic sea ice export. Geophys Res Lett 27:989–992

    Article  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78

    Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Isaksson E et al (2001) A new ice-core record from Lomonosovfonna, Svalbard: viewing the 1920–1997 data in relation to present climate and environmental conditions. J Glaciol 47(157):335–345

    Article  Google Scholar 

  • Isaksson E et al (2003) Ice cores from Svalbard—useful archives of past climate and pollution history. Phys Chem Earth 28:1217–1228

    Google Scholar 

  • Isaksson E et al (2005) Two ice-core δ18O records from Svalbard illustrating climate and sea-ice variability over the last 400 years. Holocene 15(4):501–509

    Article  Google Scholar 

  • Jevrejeva S, Moore JC (2001) Singular spectrum analysis of Baltic Sea ice conditions and large-scale atmospheric patterns since 1708. Geophys Res Lett 28:4503–4506

    Article  Google Scholar 

  • Jevrejeva S, Moore JC, Grinsted A (2003) Influence of the Arctic oscillation and El Niño-Southern oscillation (ENSO) on ice conditions in the Baltic Sea: The wavelet approach. J Geophys Res 108(D21):4677. doi:10.1029/2003JD003417

    Article  Google Scholar 

  • Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42:RG2002. doi:10.1029/2003RG000143

    Article  Google Scholar 

  • Jones PD, Briffa KR, Barnett TP, Tett SFB (1998) High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with general circulation model control-run temperatures. Holocene 8(4):455–471

    Article  Google Scholar 

  • Jones PD et al (1999) Monthly mean pressure reconstructions for Europe for the 1780–1995 Period. Int J Climatol 19:347–364. doi:10.1002/(SICI)1097-0088(19990330)19:4<347::AID-JOC363>3.0.CO;2-S

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kekonen T, Moore J, Perämäki P, Mulvaney R, Isaksson E, Pohjola V, van de Wal RSW (2005) The 800 year long ion record from the Lomonosovfonna (Svalbard) ice core. J Geophys Res 110:D07304. doi:10.1029/2004JD005223

    Article  Google Scholar 

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:10.1029/2005GL024233

    Article  Google Scholar 

  • Lamb HH (1977) Climate: present, past and future vol 2: climatic history and the future. Methuen, London

    Google Scholar 

  • Lemke PJ, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 337–383

    Google Scholar 

  • Lindholm M (1996) Reconstruction of the past climate from ring-width chronologies of Scots pine (Pinus sylvestris L.) at the northern forest limit in Fennoscandia. Ph.D. Dissertation, University of Joensuu, Finland

  • Lindsay RW, Zhang J (2005) The thinning of arctic sea-ice, 1988–2003: have we passed a tipping point? J Clim 18:4879–4894

    Article  Google Scholar 

  • Lockwood M, Fröhlich C (2007) Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature. Proc R Soc A 463:2447–2460. doi:10.1098/rspa.2007.1880

    Article  Google Scholar 

  • Lorenz EN (1956) Empirical orthogonal functions and statistical weather prediction. MIT statistical forecasting project report no. 1, contract AF 19, 604–1566

  • Løyning TB, Dick C, Goodwin H, Pavlova O, Vinje T, Kjærnli G, Villinger T (2003) ACSYS historical ice chart archive (1553–2002). ACSYS IACPO informal report no. 8. World climate research programme, Arctic Climate System Study, Tromsø

  • Magnusdottir G, Deser C, Saravanan R (2004) The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I. Main features and storm track characteristics of the response. J Clim 17(5):857–876

    Article  Google Scholar 

  • Manabe S, Spelman MJ, Stouffer RJ (1992) Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part II. Seasonal response. J Clim 5:105–126

    Article  Google Scholar 

  • Mann ME, Emanuel K (2006) Atlantic Hurricane trends linked to climate change. Eos Trans AGU 87(24):233–244. doi:10.1029/2006EO240001

    Article  Google Scholar 

  • Mann ME, Rutherford S, Wahl E, Ammann C (2005) Testing the fidelity of methods used in proxy-based reconstructions of past climate. J Clim 18:4097–4107

    Article  Google Scholar 

  • Maslanik JA, Fowler C, Stroeve J, Drobot S, Zwally J, Yi D, Emery W (2007a) A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss. Geophys Res Lett 34:L24501. doi:10.1029/2007GL032043

    Article  Google Scholar 

  • Maslanik JA, Drobot S, Fowler C, Emery W, Barry R (2007b) On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophys Res Lett 34:L03711. doi:10.1029/2006GL028269

    Article  Google Scholar 

  • Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617

    Article  Google Scholar 

  • Moore GWK (2006) Reduction in seasonal sea ice concentration surrounding southern Baffin Island 1979–2004. Geophys Res Lett 33:L20501. doi:10.1029/2006GL027764

    Article  Google Scholar 

  • Moore JC, Grinsted A, Kekonen T, Pohjola V (2005) Separation of melting and environmental signals in an ice core with seasonal melt. Geophys Res Lett 32:L10501. doi:10.1029/2005GL023039

    Article  Google Scholar 

  • Moore J, Kekonen T, Grinsted A, Isaksson E (2006) Sulfate source inventories from a Svalbard ice core record spanning the industrial revolution. J Geophys Res 111:D15307. doi:10.1029/2005JD006453

    Article  Google Scholar 

  • Morison J, Aagaard K, Steele M (2000) Recent environmental changes in the Arctic: a review. Arctic 53(4):359–371

    Google Scholar 

  • Nghiem SV, Chao Y, Neumann G, Li P, Perovich DK, Street T, Clemente-Colón P (2006) Depletion of perennial sea ice in the East Arctic Ocean. Geophys Res Lett 33:L17501. doi:10.1029/2006GL027198

    Article  Google Scholar 

  • Nordli Ø, Kohler J (2003) The early twentieth century warming. Daily observations at Green Harbor, Grønfjorden, Spitsbergen. Norwegian Meteorological Institute, Report No. 12/03 KLIMA, Oslo

  • Ogilvie A (1992) Documentary evidence for changes in the climate of Iceland, A.D. 1500–1800. In: Bradley RS, Jones PD (eds) Climate since A.D. 1500. Routledge, London, pp 92–117

    Google Scholar 

  • Ogurtsov MG, Kocharov GE, Lindholm M, Meriläinen J, Eronen M (2002) Evidence of solar variation in tree-ring-based climate reconstructions. Solar Phys 205:403–417

    Article  Google Scholar 

  • Overland JE, Wang M (2005) The Arctic climate paradox: the recent decrease of the Arctic oscillation. Geophys Res Lett 32:L06701. doi:10.1029/2004GL021752

    Article  Google Scholar 

  • Overpeck JK et al (1997) Arctic environmental change of the last four centuries. Science 278:1251–1256

    Article  Google Scholar 

  • Parkinson CL, Cavalieri DJ (2008) Arctic sea ice variability and trends, 1979–2006. J Geophys Res 113:C07003. doi:10.1029/2007JC004558

    Article  Google Scholar 

  • Parkinson C, Cavalieri D, Gloersen P, Zwally H, Comiso J (1999) Arctic sea ice extents, areas, and trends, 1978–1996. J Geophys Res 104(C9):20837–20856

    Article  Google Scholar 

  • Peterson BJ, Holmes RM, McClelland JW, Vorosmarty CV, Lammers RB, Shiklomanov AI, Shiklomanov IA, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173

    Article  Google Scholar 

  • Pohjola VA, Moore JC, Isaksson E, Jauhiainen T, van de Wal RSW, Martma T, Meijer HAJ, Vaikmäe R (2002) Effect of periodic melting on geochemical and isotopic signals in an ice core from Lomonosovfonna, Svalbard. J Geophys Res 107(D4):4036. doi:10.1029/2000JD000149

    Article  Google Scholar 

  • Polyakov IV, Johnson MA (2000) Arctic decadal and interdecadal variability. Geophys Res Lett 27(24):4097–4100

    Article  Google Scholar 

  • Polyakov IV et al (2002) Observationally based assessment of polar amplification of global warming. Geophys Res Lett 29(18):1878. doi:10.1029/2001GL011111

    Article  Google Scholar 

  • Polyakov IV, Bekryaev RV, Alekseev GV, Bhatt US, Colony RL, Johnson MA, Makshtas AP, Walsh D (2003a) Variability and trends of air temperature and pressure in the Maritime Arctic, 1875–2000. J Clim 16:2067–2077

    Article  Google Scholar 

  • Polyakov IV et al (2003b) Long-term ice variability in Arctic Marginal Seas. J Clim 16:2078–2085

    Article  Google Scholar 

  • Polyakov IV et al (2004) Variability of the intermediate Atlantic water of the Arctic Ocean over the last 100 years. J Clim 17(23):4485–4497

    Article  Google Scholar 

  • Polyakova EI, Journel AG, Polyakov IV, Bhatt US (2006) Changing relationship between the North Atlantic oscillation and key North Atlantic climate parameters. Geophys Res Lett 33:L03711. doi:10.1029/2005GL024573

    Article  Google Scholar 

  • Randall D et al (1998) Status of and outlook for large-scale modeling of atmosphere–ice–ocean interactions in the Arctic. Bull Am Meteorol Soc 79:197–219

    Article  Google Scholar 

  • Rigor IG, Wallace JM, Colony RL (2002) Response of sea ice to the Arctic oscillation. J Clim 15:2648–2663

    Article  Google Scholar 

  • Robinson DA, Serreze MC, Barry RG, Scharfen G, Kukla G (1992) Large-scale patterns and variability of snowmelt and parameterized surface albedo in the Arctic basin. J Clim 5:1109–1119

    Article  Google Scholar 

  • Rothrock DA, Zhang J (2005) Arctic Ocean sea ice volume: what explains its recent depletion? J Geophys Res 110:C01002. doi:10.1029/2004JC002282

    Article  Google Scholar 

  • Rothrock DA, Yu Y, Maykut GA (1999) Thinning of the Arctic sea-ice cover. Geophys Res Lett 26:3469–3472

    Article  Google Scholar 

  • Rothrock DA, Percival DB, Wensnahan M (2008) The decline in arctic sea-ice thickness: separating the spatial, annual, and interannual variability in a quarter century of submarine data. J Geophys Res 113:C05003. doi:10.1029/2007JC004252

    Article  Google Scholar 

  • Schaeffer M, Selten FM, Opsteegh JD, Goose H (2004) The influence of ocean convection patterns on high-latitude climate projections. J Clim 17:4316–4329

    Article  Google Scholar 

  • Serreze MC, Francis JA (2006a) The Arctic amplification debate. Clim Change 76:241–264

    Article  Google Scholar 

  • Serreze MC, Francis JA (2006b) The Arctic on the fast track of change. Weather 61(3):65–69

    Article  Google Scholar 

  • Serreze MC, Carse F, Barry R, Rogers JC (1997) Icelandic low cyclone activity: climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. J Clim 10:453–464

    Article  Google Scholar 

  • Serreze MC et al (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:159–207

    Article  Google Scholar 

  • Serreze MC et al (2003) A record minimum arctic sea ice extent, area in 2002. Geophys Res Lett 30(3):1110. doi:10.1029/2002GL016406

    Article  Google Scholar 

  • Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1536

    Article  Google Scholar 

  • Shapiro I, Colony R, Vinje T (2003) April sea ice extent in the Barents Sea, 1850–2001. Polar Res 22(1):5–10

    Article  Google Scholar 

  • Singarayer JS, Bamber J, Valdes PJ (2006) Twenty-first-century climate impacts from a declining Arctic Sea ice cover. J Clim 19:1109–1125

    Article  Google Scholar 

  • Slonosky VC, Jones PD, Davies TD (2001) Atmospheric circulation and surface temperature in Europe from the eighteenth century to 1995. Int J Climatol 21:63–75

    Article  Google Scholar 

  • Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501. doi:10.1029/2007GL029703

    Article  Google Scholar 

  • Stroeve J, Serreze M, Drobot S, Gearheard S, Holland M, Maslanik J, Meier W, Scambos T (2008) Arctic Sea ice extent plummets in 2007. Eos Trans AGU 89(2):13–14

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I. Month-to-month variability. J Clim 13:1000–1016

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM, Hegerl G (2000) Annular modes in the extratropical circulation. Part II. Trends. J Clim 13:1018–1036

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78

    Article  Google Scholar 

  • Tucker WB, Weatherly JW, Eppler DT, Farmer LD, Bentley DL (2001) Evidence for rapid thinning of sea ice in the Western Arctic Ocean at the end of the 1980s. Geophys Res Lett 28:2851–2854

    Article  Google Scholar 

  • Vinje T (1976) Sea ice conditions in the European sector of the marginal seas of the Arctic, 1966–1975. Norsk Polarinst, Årbok, 1975, Norwegian Polar Institute, pp 163–174

  • Vinje T (1999) Barents Sea ice edge variation over the past 400 years. Extended abstracts, workshop on sea-ice charts of the Arctic. World Meteorological Organization, Seattle, WMO/TD (949): 4–6

  • Vinje T (2001) Anomalies and trends of sea-ice extent and atmospheric circulation in the Nordic Seas during the period 1864–1998. J Clim 14(3):255–267

    Article  Google Scholar 

  • Vinnikov KY et al (1999) Global warming and Northern Hemisphere Sea ice extent. Science 286:1934–1937

    Article  Google Scholar 

  • Vinther BM, Johnsen SJ, Andersen KK, Clausen HB, Hansen AW (2003) NAO signal recorded in the stable isotopes of Greenland ice cores. Geophys Res Lett 30(7):1387. doi:10.1029/2002GL016193

    Article  Google Scholar 

  • Virkkunen K, Moore JC, Isaksson E, Pohjola V, Perämäki P, Grinsted A, Kekonen T (2007) Warm summers and ion concentrations in snow: comparison of present day with Medieval Warm Epoch from snow pits and an ice core from Lomonosovfonna, Svalbard. J Glaciol 53(183):623–634

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–221

    Article  Google Scholar 

  • Winton M (2006) Does the Arctic sea ice have a tipping point? Geophys Res Lett 33:L23504. doi:10.1029/2006GL028017

    Article  Google Scholar 

  • Zhang J, Lindsay R, Steele M, Schweiger A (2008) What drove the dramatic retreat of arctic sea ice during summer 2007? Geophys Res Lett 35:L11505. doi:10.1029/2008GL034005

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially funded by the G8 Legacy Chair in Ecology given to Dr. E.A. Johnson at the University of Calgary (Canada). We want to thank all the people who in various ways helped to make the Lomonosovfonna ice-coring project possible. Logistical support came from NPI in Longyearbyen and financial support came from Norwegian Polar Institute and The Norwegian Research Council. We would also want to thank Dmitry Divine at the Norwegian Polar Institute in Tromsø (Norway) for his help and assessment on the quality of the Nordic Seas sea ice records. Finally, thanks also to all the people from various institutions in Finland who have helped in the development of the supra-long timberline tree-ring chronology. The Kone Foundation supported Samuli Helama.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Macias Fauria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macias Fauria, M., Grinsted, A., Helama, S. et al. Unprecedented low twentieth century winter sea ice extent in the Western Nordic Seas since A.D. 1200. Clim Dyn 34, 781–795 (2010). https://doi.org/10.1007/s00382-009-0610-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-009-0610-z

Keywords

Navigation