Skip to main content

Advertisement

Log in

Importance of oceanic resolution and mean state on the extra-tropical response to El Niño in a matrix of coupled models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The extra-tropical response to El Niño in configurations of a coupled model with increased horizontal resolution in the oceanic component is shown to be more realistic than in configurations with a low resolution oceanic component. This general conclusion is independent of the atmospheric resolution. Resolving small-scale processes in the ocean produces a more realistic oceanic mean state, with a reduced cold tongue bias, which in turn allows the atmospheric model component to be forced more realistically. A realistic atmospheric basic state is critical in order to represent Rossby wave propagation in response to El Niño, and hence the extra-tropical response to El Niño. Through the use of high and low resolution configurations of the forced atmospheric-only model component we show that, in isolation, atmospheric resolution does not significantly affect the simulation of the extra-tropical response to El Niño. It is demonstrated, through perturbations to the SST forcing of the atmospheric model component, that biases in the climatological SST field typical of coupled model configurations with low oceanic resolution can account for the erroneous atmospheric basic state seen in these coupled model configurations. These results highlight the importance of resolving small-scale oceanic processes in producing a realistic large-scale mean climate in coupled models, and suggest that it might may be possible to “squeeze out” valuable extra performance from coupled models through increases to oceanic resolution alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AchutaRao K, Sperber K (2002) Simulation of the El Niño Southern oscillation: results from the coupled model intercomparison project. Clim Dyn 19(3):191–209. doi:10.1007/s00382-001-0221-9

    Google Scholar 

  • Alexander MA, Bladé I, Newman M, Lanzante JR, Lau N-C, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15(16):2205–2231. doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2

    Article  Google Scholar 

  • Brayshaw D, Hoskins B, Blackburn M (2008) The storm-track response to idealized SST perturbations in an aquaplanet GCM. J Atmos Sci 65(9):2842–2860. doi:10.1175/2008JAS2657.1

    Article  Google Scholar 

  • Brayshaw DJ, Hoskins B, Blackburn M (2011) The basic ingredients of the North Atlantic storm track. Part II: sea surface temperatures. J Atmos Sci 68(8):1784–1805. doi:10.1175/2011JAS3674.1

    Article  Google Scholar 

  • Dawson A, Matthews AJ, Stevens DP (2011) Rossby wave dynamics of the extra-tropical response to El Niño: importance of the basic state in coupled GCMs. Clim Dyn 37(1):391–405. doi:10.1007/s00382-010-0854-7

    Article  Google Scholar 

  • Deser C, Blackmon ML (1995) On the relationship between tropical and North Pacific sea surface temperature variations. J Clim 8(6):1677–1680. doi:10.1175/1520-0442(1995)008<1677:OTRBTA>2.0.CO;2

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16(2):147–168. doi:10.1007/s003820050010

    Article  Google Scholar 

  • Graham NE, Barnett TP, Wilde R, Ponater M, Schubert S (1994) On the roles of tropical and midlatitude SSTs in forcing interannual to interdecadal variability in the winter Northern Hemisphere circulation. J Clim 7(9):1416–1441. doi:10.1175/1520-0442(1994)007<1416:OTROTA>2.0.CO;2

    Article  Google Scholar 

  • Guilyardi E, Gualdi S, Slingo J, Navarra A, Delecluse , J Cole, G Madec, Roberts M, Latif M, Terray L (2004) Representing El Niño in coupled ocean–atmosphere GCMs: the dominant role of the atmospheric component. J Clim 17(24):4623–4629. doi:10.1175/JCLI-3260.1

    Article  Google Scholar 

  • Hoskins BJ, Ambrizzi T (1993) Rossby wave propagation on a realistic longitudinally varying flow. J Atmos Sci 50(12):1661–1671. doi:10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2

    Article  Google Scholar 

  • Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38(6):1179–1196. doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2

    Article  Google Scholar 

  • Inatsu M, Mukougawa H, Xie S (2002) Tropical and extratropical SST effects on the midlatitude storm track. J Meteorol Soc Jpn 80(4B):1069–1076. doi:10.2151/jmsj.80.1069

    Article  Google Scholar 

  • Johns TC, Durman CF, Banks HT, Roberts MJ, McLaren AJ, Ridley JK, Senior CA, Williams KD, Jones A, Rickard GJ, Cusack S, Ingram WJ, Crucifix M, Sexton DMH, Joshi MM, Dong B-W, Spencer H, Hill RSR, Gregory JM, Keen AB, Pardaens AK, Lowe JA, Bodas-Salcedo A, Stark S, Searl Y (2006) The new Hadley Centre climate model (HadGEM1): evaluation of coupled simulations. J Clim 19(7):1327–1353. doi:10.1175/JCLI3712.1

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woolen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuazaki W, Higgins W, Jonowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  • Karoly D (1983) Rossby wave propagation in a barotropic atmosphere. Dynam Atmos Oceans 7(2):111–125. doi:10.1016/0377-0265(83)90013-1

    Article  Google Scholar 

  • Kiladis GN, Weickmann KM (1992) Circulation anomalies associated with tropical convection during northern winter. Mon Weather Rev 120(9):1900–1923. doi:10.1175/1520-0493(1992)120<1900:CAAWTC>2.0.CO;2

    Article  Google Scholar 

  • Lau N-C, Nath MJ (1994) A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere–ocean system. J Clim 7(8):1184–1207. doi:10.1175/1520-0442(1994)007<1184:AMSOTR>2.0.CO;2

    Article  Google Scholar 

  • Mechoso CR, Robertson AW, Barth N, Davey MK, Delecluse P, Gent PR, Ineson S, Kirtman B, Latif M, Treut HL, Nagai T, Neelin JD, Philander SGH, Polcher J, Schopf PS, Stockdale T, Suarez MJ, Terray L, Thual O, Tribbia JJ (1995) The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon Weather Rev 123(9):2825–2838. doi:10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2

    Article  Google Scholar 

  • Navarra A, Gualdi SMS, Behera S, Luo J-J, Masson S, Guilyardi E, Delecluse P, Yamagata T (2008) Atmospheric horizontal resolution affects tropical climate variability in coupled models. J Clim 21(4):730–750. doi:10.1175/2007JCLI1406.1

    Article  Google Scholar 

  • Norris JR (2000) Interannual and interdecadal variability in the storm track, cloudiness, and sea surface temperature over the summertime North Pacific. J Clim 13(2):422–430. doi:10.1175/1520-0442(2000)013<0422:IAIVIT>2.0.CO;2

    Article  Google Scholar 

  • Philander SG (1990) El Niño La Niña and the southern oscillation, 1st edn. Academic Press, London, p 287

    Google Scholar 

  • Philander SGH, Hurlin WJ, Pacanowski RC (1986) Properties of long equatorial waves in models of the seasonal cycle in the tropical Atlantic and Pacific oceans. J Geophys Res 91(C12):14207–14211. doi:10.1029/JC091iC12p14207

    Article  Google Scholar 

  • Pope V, Stratton R (2002) The processes governing horizontal resolution sensitivity in a climate model. Clim Dyn 19(3):211–236. doi:10.1007/s00382-001-0222-8

    Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate Models and Their Evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Roberts MJ, Banks H, Gedney N, Gregory J, Hill R, Mullerworth S, Pardaens A, Rickard G, Thorpe R, Wood R (2004) Impact of an eddy-permitting ocean resolution on control and climate change simulations with a global coupled GCM. J Clim 17(1):3–20. doi:10.1175/1520-0442(2004)017<0003:IOAEOR>2.0.CO;2

    Article  Google Scholar 

  • Roberts MJ, Clayton A, Demory M-E, Donners J, Vidale PL, Norton W, Shaffrey L, Stevens DP, Stevens I, Wood RA, Slingo J (2009) Impact of resolution on the tropical Pacific circulation in a matrix of coupled models. J Clim 22(10):2541–2556. doi:10.1175/2008JCLI2537.1

    Article  Google Scholar 

  • Shaffrey LC, Stevens I, Norton WA, Roberts MJ, Vidale PL, Harle JD, Jrrar A, Stevens DP, Woodage MJ, Demory M-E, Donners J, C D B, Clayton A, Cole JW, Wilson SS, Connolley WM, Davies TM, Iwi AM, Johns TC, King JC, New AL, Slingo JM, Slingo A, Steenman-Clark L, Martin GM (2009) UK-HiGEM: the new UK high resolution global environment model. Model description and basic evaluation. J Clim 22(8):1861–1896. doi:10.1175/2008JCLI2508.1

    Article  Google Scholar 

  • Wilks DS (2006) Statistical analysis in the atmospheric sciences, 2nd edn. Academic Press, London, p 627

    Google Scholar 

Download references

Acknowledgments

The models described were developed from the Met Office Hadley Centre Model by the UK High-Resolution Modelling (HiGEM) Project and the UK Japan Climate Collaboration (UJCC). HiGEM is supported by a NERC High Resolution Climate Modelling Grant (R8/H12/123). UJCC was supported by the Foreign and Commonwealth Office Global Opportunities Fund, and jointly funded by NERC and the DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). Some model integrations were performed using the Japanese Earth Simulator supercomputer, supported by JAMSTEC. NCEP/NCAR reanalysis data were provided by the NOAA/OAR/ERSL PSD, Boulder Colorado, USA, from their web site at http://www.cdc.noaa.gov/. The UKMO HadISST data were provided by the British Atmospheric Data Centre, from their website at http://badc.nerc.ac.uk/data/hadisst/. AD was supported by a NERC PhD studentship. We thank two anonymous reviewers whose comments helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Dawson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawson, A., Matthews, A.J., Stevens, D.P. et al. Importance of oceanic resolution and mean state on the extra-tropical response to El Niño in a matrix of coupled models. Clim Dyn 41, 1439–1452 (2013). https://doi.org/10.1007/s00382-012-1518-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1518-6

Keywords

Navigation