Skip to main content
Log in

Multi-model assessment of the impact of soil moisture initialization on mid-latitude summer predictability

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Land surface initial conditions have been recognized as a potential source of predictability in sub-seasonal to seasonal forecast systems, at least for near-surface air temperature prediction over the mid-latitude continents. Yet, few studies have systematically explored such an influence over a sufficient hindcast period and in a multi-model framework to produce a robust quantitative assessment. Here, a dedicated set of twin experiments has been carried out with boreal summer retrospective forecasts over the 1992–2010 period performed by five different global coupled ocean–atmosphere models. The impact of a realistic versus climatological soil moisture initialization is assessed in two regions with high potential previously identified as hotspots of land–atmosphere coupling, namely the North American Great Plains and South-Eastern Europe. Over the latter region, temperature predictions show a significant improvement, especially over the Balkans. Forecast systems better simulate the warmest summers if they follow pronounced dry initial anomalies. It is hypothesized that models manage to capture a positive feedback between high temperature and low soil moisture content prone to dominate over other processes during the warmest summers in this region. Over the Great Plains, however, improving the soil moisture initialization does not lead to any robust gain of forecast quality for near-surface temperature. It is suggested that models biases prevent the forecast systems from making the most of the improved initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alessandri A, Navarra A (2008) On the coupling between vegetation and rainfall inter-annual anomalies: Possible contributions to seasonal rainfall predictability over land areas. Geophys Res Lett. doi:10.1029/2007gl032415

    Google Scholar 

  • Alessandri A, Catalano F, De Felice M, Van Den Hurk B, Doblas Reyes FJ, Boussetta S, Balsamo G, Miller P (2016) Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth. Clim Dyn (in press)

  • Baehr J, Piontek R (2014) Ensemble initialization of the oceanic component of a coupled model through bred vectors at seasonal-to-interannual timescales. Geosci Model Dev 7:453–461. doi:10.5194/gmd-7-453-2014

    Article  Google Scholar 

  • Balsamo G, Albergel C, Beljaars A et al (2015) ERA-Interim/Land: a global land reanalysis dataset. Hydrol Earth Syst Sci 19:389–407. doi:10.5194/hess-19-389-2015

    Article  Google Scholar 

  • Bellprat O, Kotlarski S, Lüthi D et al (2016) Objective calibration of regional climate models: application over Europe and North America. J Clim 29(2):819–838. doi:10.1175/JCLI-D-15-0302.1

    Article  Google Scholar 

  • Best MJ, Pryor M, Clark DB, et al (2011) The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci Model Dev Discuss 4:595–640. doi:10.5194/gmdd-4-595-2011

    Article  Google Scholar 

  • Boisserie M, Decharme B, Descamps L, Arbogast P (2016) Land surface initialization strategy for a global reforecast dataset. QJR Meteorol Soc 142:880–888. doi:10.1002/qj.2688

    Article  Google Scholar 

  • Boussetta S, Balsamo G, Beljaars A et al (2012) Natural land carbon dioxide exchanges in the ECMWF integrated forecasting system: implementation and offline validation. European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading

  • Challinor AJ, Slingo JM, Wheeler TR, Doblas-Reyes FJ (2005) Probabilistic simulations of crop yield over western India using the DEMETER seasonal hindcast ensembles. Tellus A 57:498–512. doi:10.1111/j.1600-0870.2005.00126.x

    Article  Google Scholar 

  • Cheruy F, Dufresne JL, Hourdin F, Ducharne A (2014) Role of clouds and land-atmosphere coupling in midlatitude continental summer warm biases and climate change amplification in CMIP5 simulations. Geophys Res Lett 41:6493–6500. doi:10.1002/2014GL061145

    Article  Google Scholar 

  • Conil S, Douville H, Tyteca S (2008) Contribution of realistic soil moisture initial conditions to boreal summer climate predictability. Clim Dyn 32:75–93. doi:10.1007/s00382-008-0375-9

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. QJR Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Díez E, Primo C, García-Moya JA, Gutiérrez JM et al (2005), Statistical and dynamical downscaling of precipitation over Spain from DEMETER seasonal forecasts. Tellus A 57:409–423. doi:10.1111/j.1600-0870.2005.00130.x

    Article  Google Scholar 

  • Dirmeyer PA (2006) The hydrologic feedback pathway for land–climate coupling. J Hydrometeor 7:857–867. doi:10.1175/jhm526.1

    Article  Google Scholar 

  • Dirmeyer PA (2011) The terrestrial segment of soil moisture–climate coupling. Geophys Res Lett. doi:10.1029/2011gl048268

    Google Scholar 

  • Dirmeyer PA, Wang Z, Mbuh MJ, Norton HE (2014) Intensified land surface control on boundary layer growth in a changing climate. Geophys Res Lett 41:1290–1294. doi:10.1002/2013GL058826

    Article  Google Scholar 

  • Doblas-Reyes FJ, García-Serrano J, Lienert F et al (2013) Seasonal climate predictability and forecasting: status and prospects. WIREs Clim Change 4:245–268. doi:10.1002/wcc.217

  • Douville H (2009) Relative contribution of soil moisture and snow mass to seasonal climate predictability: a pilot study. Clim Dyn 34:797–818. doi:10.1007/s00382-008-0508-1

  • Dutra E, Schär C, Viterbo P, Miranda PMA (2011) Land-atmosphere coupling associated with snow cover. Geophys Res Lett. doi:10.1029/2011gl048435

    Google Scholar 

  • Fischer EM, Seneviratne SI, Vidale PL et al (2007) Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J Climate 20:5081–5099. doi:10.1175/jcli4288.1

    Article  Google Scholar 

  • García-Morales MB, Dubus L (2007) Forecasting precipitation for hydroelectric power management: how to exploit GCM’s seasonal ensemble forecasts. Int J Climatol 27:1691–1705. doi:10.1002/joc.1608

    Article  Google Scholar 

  • Ha KJ, Mahrt L (2003) Radiative and turbulent fluxes in the nocturnal boundary layer. Tellus A 55(4):317–327. doi:10.1034/j.1600-0870.2003.00031.x

    Article  Google Scholar 

  • Hagedorn R, Doblas-Reyes FJ, Palmer TN (2005) The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus A 57:219–233. doi:10.1111/j.1600-0870.2005.00103.x

    Google Scholar 

  • Hagemann S, Stacke T (2014) Impact of the soil hydrology scheme on simulated soil moisture memory. Clim Dyn 44:1731–1750. doi:10.1007/s00382-014-2221-6

    Article  Google Scholar 

  • Harris I, Jones P, Osborn T, Lister D (2013) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34:623–642. doi:10.1002/joc.3711

    Article  Google Scholar 

  • Hazeleger W, Wang X, Severijns C et al (2011) EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Clim Dyn 39:2611–2629. doi:10.1007/s00382-011-1228-5

    Article  Google Scholar 

  • Hirschi M, Seneviratne SI, Alexandrov V et al (2010) Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat Geosci 4:17–21. doi:10.1038/ngeo1032

    Article  Google Scholar 

  • Hirschi M, Mueller B, Dorigo W, Seneviratne S (2014) Using remotely sensed soil moisture for land–atmosphere coupling diagnostics: the role of surface vs. root-zone soil moisture variability. Remote Sens Environ 154:246–252. doi:10.1016/j.rse.2014.08.030

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett. doi:10.1029/2009gl040000

    Google Scholar 

  • Hurk BVD, Doblas-Reyes F, Balsamo G et al (2010) Soil moisture effects on seasonal temperature and precipitation forecast scores in Europe. Clim Dyn 38:349–362. doi:10.1007/s00382-010-0956-2

  • Hurk BVD, Kim H, Krinner G et al (2016) The land surface, snow and soil moisture model intercomparison program (LS3MIP): aims, set-up and expected outcome. Geosci Model Dev Discuss 1–41. doi:10.5194/gmd-2016-72

  • Klein SA, Jiang X, Boyle J, Malyshev S, Xie S (2006) Diagnosis of the summertime warm and dry bias over the U.S. Southern great plains in the GFDL climate model using a weather forecasting approach. Geophys Res Lett 33:L18805. doi:10.1029/2006gl027567

    Article  Google Scholar 

  • Koster RD (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140. doi:10.1126/science.1100217

    Article  Google Scholar 

  • Koster RD, Sud YC, Guo Z et al (2006) GLACE: the global land–atmosphere coupling experiment. Part I: Overview. J Hydrometeor 7:590–610. doi:10.1175/jhm510.1

    Article  Google Scholar 

  • Koster RD, Chang Y, Schubert SD (2014) A mechanism for land–atmosphere feedback involving planetary wave structures. J Climate 27:9290–9301. doi:10.1175/jcli-d-14-00315.1

    Article  Google Scholar 

  • Lorenz R, Jaeger EB, Seneviratne SI (2010) Persistence of heat waves and its link to soil moisture memory. Geophys Res Lett 37:L09703. doi: 10.1029/2010GL042764

  • Lyon B, Dole RM (1995) A diagnostic comparison of the 1980 and 1988 U.S. summer heat wave-droughts. J Clim 8:1658–1675. doi:10.1175/1520-0442(1995)008<1658:ADCOTA>2.0.CO;2

    Article  Google Scholar 

  • Ma H-Y, Xie S, Klein SA et al (2014) On the correspondence between mean forecast errors and climate errors in CMIP5 models. J Clim 27:1781–1798. doi:10.1175/jcli-d-13-00474.1

    Article  Google Scholar 

  • Maclachlan C, Arribas A, Peterson KA et al (2014) Global seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. QJR Meteorol Soc 141:1072–1084. doi:10.1002/qj.2396

    Article  Google Scholar 

  • Mahrt L (1999) Stratified atmospheric boundary layers. Boundary Layer Meteorol 90:375–396. doi:10.1023/A:1001765727956

    Article  Google Scholar 

  • Masson V, Moigne PL, Martin E et al (2013) The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci Model Dev 6:929–960. doi:10.5194/gmd-6-929-2013

    Article  Google Scholar 

  • Materia S, Borrelli A, Bellucci A et al (2014) Impact of atmosphere and land surface initial conditions on seasonal forecasts of global surface temperature. J Clim 27:9253–9271. doi:10.1175/jcli-d-14-00163.1

    Article  Google Scholar 

  • McNider RT, Christy JR, Biazar A (2010) A stable boundary layer perspective on global temperature trends. IOP Conf Ser Earth Environ Sci 13:012003 doi:10.1088/1755-1315/13/1/012003

    Article  Google Scholar 

  • Mearns LO, Arritt R, Biner S et al (2012) The North American regional climate change assessment program: overview of phase I results. Bull Am Meteor Soc 93:1337–1362. doi:10.1175/BAMS-D-11-00223.1

    Article  Google Scholar 

  • Mueller ND, Butler EE, Mckinnon KA et al (2015) Cooling of US Midwest summer temperature extremes from cropland intensification. Nat Clim Change 6:317–322. doi:10.1038/nclimate2825

    Article  Google Scholar 

  • Orsolini YJ, Senan R, Balsamo G et al (2013) Impact of snow initialization on sub-seasonal forecasts. Clim Dyn 41:1969–1982. doi:10.1007/s00382-013-1782-0

    Article  Google Scholar 

  • Orth R, Seneviratne SI (2012) Analysis of soil moisture memory from observations in Europe. J Geophys Res. doi:10.1029/2011jd017366

    Google Scholar 

  • Palmer TN, Doblas-Reyes FJ, Hagedorn R et al (2004) Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull Amer Meteor Soc 85(6):853–872. doi: 10.1175/BAMS-85-6-853

  • Peings Y, Douville H, Alkama R, Decharme B (2010) Snow contribution to springtime atmospheric predictability over the second half of the twentieth century. Clim Dyn 37:985–1004. doi:10.1007/s00382-010-0884-1

    Article  Google Scholar 

  • Prodhomme C, Doblas-Reyes F, Bellprat O, Dutra E (2016) Impact of land-surface initialization on sub-seasonal to seasonal forecasts over Europe. Clim Dyn. doi:10.1007/s00382-015-2879-4

    Google Scholar 

  • Quan X, Hoerling M, Whitaker J et al (2006) Diagnosing sources of U.S. seasonal forecast skill. J Clim 19:3279–3293. doi:10.1175/jcli3789.1

    Article  Google Scholar 

  • Quesada B, Vautard R, Yiou P et al (2012) Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nat Clim Change 2:736–741. doi:10.1038/nclimate1536

    Article  Google Scholar 

  • Raddatz TJ, Reick CH, Knorr W et al (2007) Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century? Clim Dyn 29:565–574. doi:10.1007/s00382-007-0247-8

    Article  Google Scholar 

  • Saha S, Nadiga S, Thiaw C et al (2006) The NCEP climate forecast system. J Clim 19:3483–3517. doi:10.1175/jcli3812.1

    Article  Google Scholar 

  • Schneider U, Fuchs T, Meyer-Christoffer A, Rudolf B (2008) Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre (GPCC), DWD, Internet Publication, vol 112. ftp://ftp.dwd.de/pub/data/gpcc/PDF/GPCC_intro_products_2008.pdf. Accessed 25 May 2016

  • Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land–atmosphere coupling and climate change in Europe. Nature 443:205–209. doi:10.1038/nature05095

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL et al (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99:125–161. doi:10.1016/j.earscirev.2010.02.004

    Article  Google Scholar 

  • Seneviratne SI, Wilhelm M, Stanelle T et al (2013) Impact of soil moisture-climate feedbacks on CMIP5 projections: first results from the GLACE-CMIP5 experiment. Geophys Res Lett 40:5212–5217. doi:10.1002/grl.50956

    Article  Google Scholar 

  • Stéfanon M, Drobinski P, D’Andrea F et al (2013) Soil moisture-temperature feedbacks at meso-scale during summer heat waves over Western Europe. Clim Dyn 42:1309–1324. doi:10.1007/s00382-013-1794-9

    Article  Google Scholar 

  • Steiger JH (1980) Tests for comparing elements of a correlation matrix. Psychol Bull 87:245–251. doi:10.1037/0033-2909.87.2.245

    Article  Google Scholar 

  • Stevens B, Giorgetta M, Esch M et al (2013) Atmospheric component of the MPI-M Earth system model: ECHAM6. J Adv Model Earth Syst 5:146–172. doi:10.1002/jame.20015

    Article  Google Scholar 

  • Stockdale TN, Anderson DLT, Balmaseda MA et al (2011) ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Clim Dyn 37:455–471. doi:10.1007/s00382-010-0947-3

    Article  Google Scholar 

  • Thomson MC, Doblas-Reyes FJ, Mason SJ et al (2006) Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 439:576–579. doi:10.1038/nature04503

    Article  Google Scholar 

  • Voldoire A, Sanchez-Gomez E, Mélia DSY et al (2012) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121. doi:10.1007/s00382-011-1259-y

    Article  Google Scholar 

  • Waters J, Lea DJ, Martin MJ et al (2014) Implementing a variational data assimilation system in an operational 1/4 degree global ocean model. QJR Meteorol Soc 141:333–349. doi:10.1002/qj.2388

    Article  Google Scholar 

  • Weedon GP, Balsamo G, Bellouin N et al (2014) The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour Res 50:7505–7514. doi:10.1002/2014wr015638

    Article  Google Scholar 

  • Weiss M, Hurk BVD, Haarsma R, Hazeleger W (2012) Impact of vegetation variability on potential predictability and skill of EC-Earth simulations. Clim Dyn 39:2733–2746. doi:10.1007/s00382-012-1572-0

    Article  Google Scholar 

  • Whan K, Zscheischler J, Orth R et al (2015) Impact of soil moisture on extreme maximum temperatures in Europe. Weather Clim Extremes 9:57–67. doi:10.1016/j.wace.2015.05.001

    Article  Google Scholar 

  • Xu L, Dirmeyer P (2011) Snow–atmosphere coupling strength in a global atmospheric model. Geophys Res Lett 38:L13401. doi:10.1029/2011GL048049

    Article  Google Scholar 

  • Yoon J-H, Leung LR (2015) Assessing the relative influence of surface soil moisture and ENSO SST on precipitation predictability over the contiguous United States. Geophys Res Lett 42:5005–5013. doi:10.1002/2015gl064139

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Jeff Knight (Met Office Hadley Centre) for his constructive comments on earlier versions of this manuscript. The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007–2013) SPECS project (Grant Agreement Number 308378) and H2020 Framework Programme IMPREX project (Grant Agreement Number 641811). Constantin Ardilouze was also supported by the BSC Centro de Excelencia Severo Ochoa Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Ardilouze.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2085 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardilouze, C., Batté, L., Bunzel, F. et al. Multi-model assessment of the impact of soil moisture initialization on mid-latitude summer predictability. Clim Dyn 49, 3959–3974 (2017). https://doi.org/10.1007/s00382-017-3555-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3555-7

Keywords

Navigation