Skip to main content
Log in

Coenzyme Q10 supplementation ameliorates inflammatory signaling and oxidative stress associated with strenuous exercise

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Exhausting exercise induces muscle damage associated with high production of free radicals and pro-inflammatory mediators.

Aim

The objective of this study was to determine for the first time and simultaneously whether oral coenzyme Q10 (CoQ10) supplementation can prevent over-expression of inflammatory mediators and oxidative stress associated with strenuous exercise.

Methods

The participants were classified in two groups: CoQ10 group (CG) and placebo group (PG). The physical test consisted in a constant run (50 km) that combined several degrees of high effort (mountain run and ultra-endurance), in permanent climbing.

Results

Exercise was associated with an increase in TNF-α, IL-6, 8-hydroxy-2′-deoxyguanosine (8-OHdG), and isoprostane levels, revealing the degree of inflammation and oxidative stress induced. Oral supplementation of CoQ10 during exercise was efficient reducing oxidative stress (decreased membrane hydroperoxides, 8-OHdG and isoprostanes generation, increased catalase, and total antioxidant status), which would lead to the maintenance of the cell integrity. Data obtained also indicate that CoQ10 prevents over-expression of TNF-α after exercise, together with an increase in sTNF-RII that limits the pro-inflammatory actions of TNF. Moreover, CoQ10 supplementation reduced creatinine production.

Conclusions

CoQ10 supplementation before strenuous exercise decreases the oxidative stress and modulates the inflammatory signaling, reducing the subsequent muscle damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siddiqui NI, Nessa A, Hossain MA (2010) Regular physical exercise: way to healthy life. Mymensingh Med J 19:154–158

    CAS  Google Scholar 

  2. Reichhold S, Neubauer O, Bulmer AC, Knasmüller S, Wagner KH (2009) Endurance exercise and DNA stability: is there a link to duration and intensity? Mutat Res 682:28–38

    Article  CAS  Google Scholar 

  3. Liu CC, Huang CC, Lin WT, Hsieh CC, Huang SY, Lin SJ, Yang SC (2005) Lycopene supplementation attenuated xanthine oxidase and myeloperoxidase activities in skeletal muscle tissues of rats after exhaustive exercise. Br J Nutr 94:595–601

    Article  CAS  Google Scholar 

  4. Suzuki K, Yamada M, Kurakake S, Okamura N, Yamaya K, Liu Q, Kudoh S, Kowatari K, Nakaji S, Sugawara K (2000) Circulating cytokines and hormones with immunosuppressive but neutrophil-priming potentials rise after endurance exercise in humans. Eur J Appl Physiol 81:281–287

    Article  CAS  Google Scholar 

  5. Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1246

    Article  CAS  Google Scholar 

  6. Vina J, Gomez-Cabrera MC, Lloret A, Marquez R, Minana JB, Pallardo FV, Sastre J (2000) Free radicals in exhaustive physical exercise: mechanism of production, and protection by antioxidants. IUBMB Life 50:271–277

    Article  CAS  Google Scholar 

  7. Altan O, Pabuccuoglu A, Altan A, Konyalioglu S, Bayraktar H (2003) Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. Br Poult Sci 44:545–550

    Article  CAS  Google Scholar 

  8. Sen CK (1995) Oxidants and antioxidants in exercise. J Appl Physiol 79:675–686

    CAS  Google Scholar 

  9. Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS, Wagner PD (1995) Myoglobin O2 desaturation during exercise: evidence of limited O2 transport. J Clin Invest 96:1916–1926

    Article  CAS  Google Scholar 

  10. Clanton TL (2007) Hypoxia-induced reactive oxygen species formation in skeletal muscle. J Appl Physiol 102:2379–2388

    Article  CAS  Google Scholar 

  11. Nikolaidis MG, Jamurtas AZ (2009) Blood as a reactive species generator and redox status regulator during exercise. Arch Biochem Biophys 490:77–84

    Article  CAS  Google Scholar 

  12. Koren A, Sauber C, Sentjurc M, Schara M (1983) Free radicals in tetanic activity of isolated skeletal muscle. Comp Biochem Physiol 74:633–635

    CAS  Google Scholar 

  13. Urso ML, Clarkson PM (2003) Oxidative stress, exercise, and antioxidant supplementation. Toxicology 189:41–54

    Article  CAS  Google Scholar 

  14. Kasapis C, Thompson PD (2005) The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J Am Coll Cardiol 45:1563–1569

    Article  CAS  Google Scholar 

  15. Zhou S, Zhang Y, Davie A, Marshall-Gradisnik S, Hu H, Wang J, Brushett D (2005) Muscle and plasma coenzyme Q10 concentration, aerobic power and exercise economy of healthy men in response to four weeks of supplementation. J Sports Med Phys Fitness 45:337–346

    CAS  Google Scholar 

  16. Ochoa JJ, Quiles JL, Huertas FJ, Mataix J (2005) Coenzyme Q10 protects from aging-related oxidative stress and improves mitochodrial function in heart of rats fed a polyunsaturated fatty acid (PUFA)-rich diet. J Gerontol 60:970–975

    Article  Google Scholar 

  17. Cooke M, Iosia M, Buford T, Shelmadine B, Hudson G, Kerksick C, Rasmussen C, Greenwood M, Leutholtz B, Willoughby D, Kreider R (2008) Effects of acute and 14-day coenzyme Q10 supplementation on exercise performance in both trained and untrained individuals. J Int Soc Sports Nutr 5:8

    Article  Google Scholar 

  18. Hanahan DJ, Ekholm JE (1974) The preparation of red cell ghosts (membranes). Meth Enzymol 31:168–172

    Article  CAS  Google Scholar 

  19. Jiang ZY, Hunt JV, Wolff SP (1992) Detection of lipid hydroperoxides using the fox reagent. Anal Biochem 202:384–389

    Article  CAS  Google Scholar 

  20. Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Meth Enzymol 105:114–121

    Article  Google Scholar 

  21. Aebi H (1984) Catalase in vitro. Meth Enzymol 150:121–127

    Article  Google Scholar 

  22. Banfi G, Del Fabbro M, Lippi G (2009) Serum creatinine concentration and creatinine-based estimation of glomerular filtration rate in athletes. Sports Med 39:331–337

    Article  Google Scholar 

  23. Fouad AA, Al-Sultan AI, Refaie SM, Yacoubi MT (2010) Coenzyme Q10 treatment ameliorates acute cisplatin nephrotoxicity in mice. Toxicology 274:49–56

    Article  CAS  Google Scholar 

  24. Hawley JA (2002) Effect of increased fat availability on metabolism and exercise capacity. Med Sci Sports Exerc 34:1485–1491

    Article  CAS  Google Scholar 

  25. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    CAS  Google Scholar 

  26. Ochoa JJ, Quiles JL, López-Frías M, Huertas FJ, Mataix J (2007) Effect of lifelong coenzyme Q10 supplementation on age-related oxidative stress and mitochondrial function in liver and skeletal muscle of rats fed on a polyunsaturated fatty acid (PUFA)-rich diet. J Gerontol 62:1211–1218

    Article  Google Scholar 

  27. Sohet FM, Neyrinck AM, Pachikian BD, de Backer FC, Bindels LB, Niklowitz P, Menke T, Cani PD, Delzenne NM (2009) Coenzyme Q10 supplementation lowers hepatic oxidative stress and inflammation associated with diet-induced obesity in mice. Biochem Pharmacol 78:1391–1400

    Article  CAS  Google Scholar 

  28. Chou WC, Jie C, Kenedy AA, Jones RJ, Trush MA, Dang CV (2004) Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proc Natl Acad Sci USA 101:4578–4583

    Article  CAS  Google Scholar 

  29. Tsuneki H, Sekizaki N, Suzuki T, Kobayashi S, Wada T, Okamoto T, Kimura I, Sasaoka T (2007) Coenzyme Q10 prevents high glucose-induced oxidative stress in human umbilical vein endothelial cells. Eur J Pharmacol 566:1–10

    Article  CAS  Google Scholar 

  30. Barbiroli B, Iotti S, Lodi R (1998) Aspects of human bioenergetics as studied in vivo by magnetic resonance spectroscopy. Biochimie 80:847–853

    Article  CAS  Google Scholar 

  31. Jones K, Hughes K, Mischley L, McKenna DJ (2002) Coenzyme Q-10: efficacy, safety, and use. Altern Ther Health Med 8:42–55

    Google Scholar 

  32. Roberts LJ II, Morrow JD (2000) Measurement of F2-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 28:505–513

    Article  CAS  Google Scholar 

  33. Jung HJ, Park EH, Lim CJ (2009) Evaluation of anti-angiogenic, anti-inflammatory and antinociceptive activity of coenzyme Q(10) in experimental animals. J Pharm Pharmacol 61:1391–1395

    CAS  Google Scholar 

  34. Ilbey YO, Ozbek E, Cekmen M, Simsek A, Otunctemur A, Somay A (2009) Protective effect of curcumin in cisplatin-induced oxidative injury in rat testis: mitogen-activated protein kinase and nuclear factor-kappa B signaling pathways. Hum Reprod 24:1717–1725

    Article  CAS  Google Scholar 

  35. Pedersen BK, Steensberg A, Fischer C, Keller C, Kelle P, Plomgaard P, Wolsk-Petersen E, Febbraio M (2004) The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor? Proc Nutr Soc 63:263–267

    Article  CAS  Google Scholar 

  36. Bessler H, Bergman M, Blumberger N, Djaldetti M, Salman H (2010) Coenzyme Q10 decreases TNF-alpha and IL-2 secretion by human peripheral blood mononuclear cells. J Nutr Sci Vitaminol 56:77–81

    Article  CAS  Google Scholar 

  37. Gökbel H, Gergerlioğlu HS, Okudan N, Gül I, Büyükbaş S, Belviranli M (2010) Effects of coenzyme Q10 supplementation on plasma adiponectin, interleukin-6, and tumor necrosis factor-alpha levels in men. J Med Food 13:216–218

    Article  Google Scholar 

  38. Perrier S, Darakhshan F, Hajduch E (2006) Il-1 receptor antagonist in metabolic diseases: Dr. Jekyll or Mr Hyde? FEBS Lett 580:6289–6294

    Article  CAS  Google Scholar 

  39. Lancaster GI (2006) Exercise and cytokines. In: Neil C, Gleeson M, MacLaren D (eds) Immune function in sport and exercise. Elsevier, New York, pp 205–220

    Chapter  Google Scholar 

  40. Reid MB, Li YP (2001) Cytokines and oxidative signaling in skeletal muscle. Acta Physiol Scand 171:225–232

    Article  CAS  Google Scholar 

  41. Kuru S, Inukai A, Kato T, Liang Y, Kimura S, Sobue G (2003) Expression of tumor necrosis factor-alpha in regenerating muscle fibers in inflammatory and noninflammatory myopathies. Acta Neuropathol 105:217–224

    CAS  Google Scholar 

  42. Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS Jr (2000) NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289:2363–2366

    Article  CAS  Google Scholar 

  43. Starace D, Riccioli A, D’Alessio A, Giampietri C, Petrungaro S, Galli R, Filippini A, Ziparo E, De Cesaris P (2005) Characterization of signaling pathways leading to Fas expression induced by TNF-alpha: pivotal role of NF-kappaB. FASEB J 19:473–475

    CAS  Google Scholar 

  44. Van Zee KJ, Kohno T, Fischer E, Rock CS, Moldawer LL, Lowry SF (1992) Tumor necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumor necrosis factor alpha in vitro and in vivo. Proc Natl Acad Sci USA 89:4845–4849

    Article  Google Scholar 

  45. Van Mierlo GJ, Scherer HU, Hameetman M, Morgan ME, Flierman R, Huizinga TW, Toes RE (2008) Cutting edge: TNFR-shedding by CD4 + CD25 + regulatory T cells inhibits the induction of inflammatory mediators. J Immunol 180:2747–2751

    Google Scholar 

  46. Serrano J, Alonso D, Encinas JM, Lopez JC, Fernandez AP, Castro-Blanco S, Fernández-Vizarra P, Richart A, Bentura ML, Santacana M, Uttenthal LO, Cuttitta F, Rodrigo J, Martinez A (2002) Adrenomedullin expression is upregulated by ischemia-reperfusion in the cerebral cortex of the adult rat. Neuroscience 109:717–731

    Article  CAS  Google Scholar 

  47. Gonzalez P, Burgaya F, Acarin L, Peluffo H, Castellano B, Gonzalez B (2009) Interleukin-10 and interleukin-10 receptor-I are upregulated in glial cells after an excitotoxic injury to the postnatal rat brain. J Neuropathol Exp Neurol 68:391–403

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the University of Granada for the personal support of J. Díaz-Castro.

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio J. Ochoa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz-Castro, J., Guisado, R., Kajarabille, N. et al. Coenzyme Q10 supplementation ameliorates inflammatory signaling and oxidative stress associated with strenuous exercise. Eur J Nutr 51, 791–799 (2012). https://doi.org/10.1007/s00394-011-0257-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-011-0257-5

Keywords

Navigation