Skip to main content

Advertisement

Log in

Melatonin attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Myocardial dysfunction is an important manifestation of sepsis. Previous studies suggest that melatonin is protective against sepsis. In addition, activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway has been reported to be beneficial in sepsis. However, the role of PI3K/Akt signaling in the protective effect of melatonin against sepsis-induced myocardial dysfunction remains unclear. Here, LY294002, a PI3K inhibitor, was used to investigate the role of PI3K/Akt signaling in mediating the effects of melatonin on sepsis-induced myocardial injury. Cecal ligation and puncture (CLP) surgery was used to establish a rat model of sepsis. Melatonin was administrated to rats intraperitoneally (30 mg/kg). The survival rate, measures of myocardial injury and cardiac performance, serum lactate dehydrogenase level, inflammatory cytokine levels, oxidative stress level, and the extent of myocardial apoptosis were assessed. The results suggest that melatonin administration after CLP surgery improved survival rates and cardiac function, attenuated myocardial injury and apoptosis, and decreased the serum lactate dehydrogenase level. Melatonin decreased the production of the inflammatory cytokines TNF-α, IL-1β, and HMGB1, increased anti-oxidant enzyme activity, and decreased the expression of markers of oxidative damage. Levels of phosphorylated Akt (p-Akt), unphosphorylated Akt (Akt), Bcl-2, and Bax were measured by Western blot. Melatonin increased p-Akt levels, which suggests Akt pathway activation. Melatonin induced higher Bcl-2 expression and lower Bax expression, suggesting inhibition of apoptosis. All protective effects of melatonin were abolished by LY294002, the PI3K inhibitor. In conclusion, our results demonstrate that melatonin mitigates myocardial injury in sepsis via PI3K/Akt signaling activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adi N, Mash DC, Ali Y, Singer C, Shehadeh L, Papapetropoulos S (2010) Melatonin MT1 and MT2 receptor expression in Parkinson’s disease. Med Sci Monit 16:BR61–BR67

    PubMed  CAS  Google Scholar 

  2. Agil A, Reiter RJ, Jimenez-Aranda A, Iban-Arias R, Navarro-Alarcon M, Marchal JA, Adem A, Fernandez-Vazquez G (2013) Melatonin ameliorates low-grade inflammation and oxidative stress in young Zucker diabetic fatty rats. J Pineal Res 54:381–388. doi:10.1111/jpi.12012

    PubMed  Google Scholar 

  3. Ali T, Kim MO (2015) Melatonin ameliorates amyloid beta-induced memory deficits, tau hyperphosphorylation and neurodegeneration via PI3/Akt/GSk3beta pathway in the mouse hippocampus. J Pineal Res. doi:10.1111/jpi.12238

    Google Scholar 

  4. Amin AH, El-Missiry MA, Othman AI (2015) Melatonin ameliorates metabolic risk factors, modulates apoptotic proteins, and protects the rat heart against diabetes-induced apoptosis. Eur J Pharmacol 747:166–173. doi:10.1016/j.ejphar.2014.12.002

    Article  PubMed  CAS  Google Scholar 

  5. Andersson U, Tracey KJ (2003) HMGB1 in sepsis. Scand J Infect Dis 35:577–584

    Article  PubMed  CAS  Google Scholar 

  6. Annane D, Bellissant E, Cavaillon JM (2005) Septic shock. Lancet 365:63–78. doi:10.1016/S0140-6736(04)17667-8

    Article  PubMed  CAS  Google Scholar 

  7. Annane D, Sharshar T (2015) Cognitive decline after sepsis. Lancet Respir Med 3:61–69. doi:10.1016/S2213-2600(14)70246-2

    Article  PubMed  CAS  Google Scholar 

  8. Antonucci E, Fiaccadori E, Donadello K, Taccone FS, Franchi F, Scolletta S (2014) Myocardial depression in sepsis: from pathogenesis to clinical manifestations and treatment. J Crit Care 29:500–511. doi:10.1016/j.jcrc.2014.03.028

    Article  PubMed  Google Scholar 

  9. Belosjorow S, Schulz R, Dorge H, Schade FU, Heusch G (1999) Endotoxin and ischemic preconditioning: TNF-alpha concentration and myocardial infarct development in rabbits. Am J Physiol 277:H2470–H2475

    PubMed  CAS  Google Scholar 

  10. Benitez-King G (2006) Melatonin as a cytoskeletal modulator: implications for cell physiology and disease. J Pineal Res 40:1–9. doi:10.1111/j.1600-079X.2005.00282.x

    Article  PubMed  CAS  Google Scholar 

  11. Benitez-King G, Anton-Tay F (1993) Calmodulin mediates melatonin cytoskeletal effects. Experientia 49:635–641

    Article  PubMed  CAS  Google Scholar 

  12. Bommhardt U, Chang KC, Swanson PE, Wagner TH, Tinsley KW, Karl IE, Hotchkiss RS (2004) Akt decreases lymphocyte apoptosis and improves survival in sepsis. J Immunol 172:7583–7591

    Article  PubMed  CAS  Google Scholar 

  13. Bondor CI, Potra AR, Moldovan D, Rusu CC, Ciorba Pop M, Muresan A, Vladutiu DS, Kacso IM (2015) Relationship of adiponectin to markers of oxidative stress in type 2 diabetic patients: influence of incipient diabetes-associated kidney disease. Int Urol Nephrol. doi:10.1007/s11255-015-1004-2

    Google Scholar 

  14. Bonnefond A, Clement N, Fawcett K, Yengo L, Vaillant E, Guillaume JL, Dechaume A, Payne F, Roussel R, Czernichow S, Hercberg S, Hadjadj S, Balkau B, Marre M, Lantieri O, Langenberg C, Bouatia-Naji N, Meta-Analysis of G, Insulin-Related Traits C, Charpentier G, Vaxillaire M, Rocheleau G, Wareham NJ, Sladek R, McCarthy MI, Dina C, Barroso I, Jockers R, Froguel P (2012) Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet 44:297–301. doi:10.1038/ng.1053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223. doi:10.1016/S0140-6736(02)09459-X

    Article  PubMed  CAS  Google Scholar 

  16. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657. doi:10.1126/science.296.5573.1655

    Article  PubMed  CAS  Google Scholar 

  17. Chandra J, Samali A, Orrenius S (2000) Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 29:323–333

    Article  PubMed  CAS  Google Scholar 

  18. Chen G, Zhao J, Yin Y, Wang B, Liu Q, Li P, Zhao L, Zhou H (2014) C-type natriuretic peptide attenuates LPS-induced endothelial activation: involvement of p38, Akt, and NF-kappaB pathways. Amino Acids 46:2653–2663. doi:10.1007/s00726-014-1816-x

    Article  PubMed  CAS  Google Scholar 

  19. Chen HH, Lin KC, Wallace CG, Chen YT, Yang CC, Leu S, Chen YC, Sun CK, Tsai TH, Chen YL, Chung SY, Chang CL, Yip HK (2014) Additional benefit of combined therapy with melatonin and apoptotic adipose-derived mesenchymal stem cell against sepsis-induced kidney injury. J Pineal Res 57:16–32. doi:10.1111/jpi.12140

    Article  PubMed  CAS  Google Scholar 

  20. Cohen MV, Yang XM, Downey JM (2007) The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation 115:1895–1903. doi:10.1161/CIRCULATIONAHA.106.675710

    Article  PubMed  Google Scholar 

  21. Court O, Kumar A, Parrillo JE, Kumar A (2002) Clinical review: myocardial depression in sepsis and septic shock. Crit Care 6:500–508

    Article  PubMed  PubMed Central  Google Scholar 

  22. Crouser ED (2004) Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion 4:729–741. doi:10.1016/j.mito.2004.07.023

    Article  PubMed  CAS  Google Scholar 

  23. Cuello F, Shankar-Hari M, Mayr U, Yin X, Marshall M, Suna G, Willeit P, Langley SR, Jayawardhana T, Zeller T, Terblanche M, Shah AM, Mayr M (2014) Redox state of pentraxin 3 as a novel biomarker for resolution of inflammation and survival in sepsis. Mol Cell Proteomics 13:2545–2557. doi:10.1074/mcp.M114.039446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Dai X, Zeng Z, Fu C, Zhang S, Cai Y, Chen Z (2015) Diagnostic value of neutrophil gelatinase-associated lipocalin, cystatin C and soluble triggering receptor expressed on myeloid cells-1 in critically ill patients with sepsis-associated acute kidney injury. Crit Care 19:223. doi:10.1186/s13054-015-0941-6

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ekelof SV, Halladin NL, Jensen SE, Zaremba T, Aaroe J, Kjaergaard B, Simonsen CW, Rosenberg J, Gogenur I (2014) Effects of intracoronary melatonin on ischemia-reperfusion injury in ST-elevation myocardial infarction. Heart Vessels. doi:10.1007/s00380-014-0589-1

    PubMed  Google Scholar 

  26. Ekmekcioglu C, Haslmayer P, Philipp C, Mehrabi MR, Glogar HD, Grimm M, Leibetseder VJ, Thalhammer T, Marktl W (2001) Expression of the MT1 melatonin receptor subtype in human coronary arteries. J Recept Signal Transduct Res 21:85–91. doi:10.1081/RRS-100107144

    Article  PubMed  CAS  Google Scholar 

  27. Ersahin C, Masana MI, Dubocovich ML (2002) Constitutively active melatonin MT(1) receptors in male rat caudal arteries. Eur J Pharmacol 439:171–172

    Article  PubMed  CAS  Google Scholar 

  28. Faria JA, Kinote A, Ignacio-Souza LM, de Araujo TM, Razolli DS, Doneda DL, Paschoal LB, Lellis-Santos C, Bertolini GL, Velloso LA, Bordin S, Anhe GF (2013) Melatonin acts through MT1/MT2 receptors to activate hypothalamic Akt and suppress hepatic gluconeogenesis in rats. Am J Physiol Endocrinol Metab 305:E230–E242. doi:10.1152/ajpendo.00094.2013

    Article  PubMed  CAS  Google Scholar 

  29. Fink T, Glas M, Wolf A, Kleber A, Reus E, Wolff M, Kiefer D, Wolf B, Rensing H, Volk T, Mathes AM (2014) Melatonin receptors mediate improvements of survival in a model of polymicrobial sepsis. Crit Care Med 42:e22–e31. doi:10.1097/CCM.0b013e3182a63e2b

    Article  PubMed  CAS  Google Scholar 

  30. Fruman DA, Cantley LC (2002) Phosphoinositide 3-kinase in immunological systems. Semin Immunol 14:7–18. doi:10.1006/smim.2001.0337

    Article  PubMed  CAS  Google Scholar 

  31. Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K (2000) Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101:660–667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gamkrelidze M, Intskirveli N, Vardosanidze K, Goliadze L, Chikhladze K, Ratiani L (2014) Myocardial dysfunction during septic shock (review). Georgian Med News 237:40–46

    PubMed  Google Scholar 

  33. Gao M, Ha T, Zhang X, Wang X, Liu L, Kalbfleisch J, Singh K, Williams D, Li C (2013) The Toll-like receptor 9 ligand, CpG oligodeoxynucleotide, attenuates cardiac dysfunction in polymicrobial sepsis, involving activation of both phosphoinositide 3 kinase/Akt and extracellular-signal-related kinase signaling. J Infect Dis 207:1471–1479. doi:10.1093/infdis/jit036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Garcia JA, Volt H, Venegas C, Doerrier C, Escames G, Lopez LC, Acuna-Castroviejo D (2015) Disruption of the NF-kappaB/NLRP3 connection by melatonin requires retinoid-related orphan receptor-alpha and blocks the septic response in mice. FASEB J. doi:10.1096/fj.15-273656

    Google Scholar 

  35. Garcia JJ, Lopez-Pingarron L, Almeida-Souza P, Tres A, Escudero P, Garcia-Gil FA, Tan DX, Reiter RJ, Ramirez JM, Bernal-Perez M (2014) Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review. J Pineal Res 56:225–237. doi:10.1111/jpi.12128

    Article  PubMed  CAS  Google Scholar 

  36. Gogenur I, Kucukakin B, Panduro Jensen L, Reiter RJ, Rosenberg J (2014) Melatonin reduces cardiac morbidity and markers of myocardial ischemia after elective abdominal aortic aneurism repair: a randomized, placebo-controlled, clinical trial. J Pineal Res 57:10–15. doi:10.1111/jpi.12138

    Article  PubMed  CAS  Google Scholar 

  37. Gottlieb RA (2003) Mitochondrial signaling in apoptosis: mitochondrial daggers to the breaking heart. Basic Res Cardiol 98:242–249. doi:10.1007/s00395-003-0404-0

    PubMed  CAS  Google Scholar 

  38. Gyurkovska V, Ivanovska N (2015) Tyrosine kinase inhibitor tyrphostin AG490 reduces liver injury in LPS-induced shock. Eur J Pharmacol 751:118–126. doi:10.1016/j.ejphar.2015.01.045

    Article  PubMed  CAS  Google Scholar 

  39. Hardeland R (2009) Melatonin: signaling mechanisms of a pleiotropic agent. BioFactors 35:183–192. doi:10.1002/biof.23

    Article  PubMed  CAS  Google Scholar 

  40. Harris HE, Andersson U, Pisetsky DS (2012) HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat Rev Rheumatol 8:195–202. doi:10.1038/nrrheum.2011.222

    Article  PubMed  CAS  Google Scholar 

  41. Hernandez-Resendiz S, Palma-Flores C, De Los Santos S, Roman-Anguiano NG, Flores M, de la Pena A, Flores PL, Fernandez GJ, Coral-Vazquez RM, Zazueta C (2015) Reduction of no-reflow and reperfusion injury with the synthetic 17beta-aminoestrogen compound Prolame is associated with PI3K/Akt/eNOS signaling cascade. Basic Res Cardiol 110:1. doi:10.1007/s00395-015-0464-y

    Article  PubMed  CAS  Google Scholar 

  42. Hevia D, Gonzalez-Menendez P, Quiros-Gonzalez I, Miar A, Rodriguez-Garcia A, Tan DX, Reiter RJ, Mayo JC, Sainz RM (2015) Melatonin uptake through glucose transporters: a new target for melatonin inhibition of cancer. J Pineal Res 58:234–250. doi:10.1111/jpi.12210

    Article  PubMed  CAS  Google Scholar 

  43. Hill SM, Belancio VP, Dauchy RT, Xiang S, Brimer S, Mao L, Hauch A, Lundberg P, Summers W, Yuan L, Frasch T, Blask DE (2015) Melatonin: an inhibitor of breast cancer. Endocr Relat Cancer. doi:10.1530/ERC-15-0030

    PubMed  PubMed Central  Google Scholar 

  44. Hirano Y, Aziz M, Yang WL, Wang Z, Zhou M, Ochani M, Khader A, Wang P (2015) Neutralization of osteopontin attenuates neutrophil migration in sepsis-induced acute lung injury. Crit Care 19:53. doi:10.1186/s13054-015-0782-3

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348:138–150. doi:10.1056/NEJMra021333

    Article  PubMed  CAS  Google Scholar 

  46. Hotchkiss RS, Karl IE (1992) Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. JAMA 267:1503–1510

    Article  PubMed  CAS  Google Scholar 

  47. Hotchkiss RS, Swanson PE, Freeman BD, Tinsley KW, Cobb JP, Matuschak GM, Buchman TG, Karl IE (1999) Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 27:1230–1251

    Article  PubMed  CAS  Google Scholar 

  48. Hsu JT, Kuo CJ, Chen TH, Wang F, Lin CJ, Yeh TS, Hwang TL, Jan YY (2012) Melatonin prevents hemorrhagic shock-induced liver injury in rats through an Akt-dependent HO-1 pathway. J Pineal Res 53:410–416. doi:10.1111/j.1600-079X.2012.01011.x

    Article  PubMed  CAS  Google Scholar 

  49. Jang JH, Chun JN, Godo S, Wu G, Shimokawa H, Jin CZ, Jeon JH, Kim SJ, Jin ZH, Zhang YH (2015) ROS and endothelial nitric oxide synthase (eNOS)-dependent trafficking of angiotensin II type 2 receptor begets neuronal NOS in cardiac myocytes. Basic Res Cardiol 110:21. doi:10.1007/s00395-015-0477-6

    Article  PubMed  CAS  Google Scholar 

  50. Jezek P, Hlavata L (2005) Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37:2478–2503. doi:10.1016/j.biocel.2005.05.013

    Article  PubMed  CAS  Google Scholar 

  51. Jiang S, Zhu W, Li C, Zhang X, Lu T, Ding Z, Cao K, Liu L (2013) alpha-Lipoic acid attenuates LPS-induced cardiac dysfunction through a PI3K/Akt-dependent mechanism. Int Immunopharmacol 16:100–107. doi:10.1016/j.intimp.2013.03.024

    Article  PubMed  CAS  Google Scholar 

  52. Johansson L, Snall J, Sendi P, Linner A, Thulin P, Linder A, Treutiger CJ, Norrby-Teglund A (2014) HMGB1 in severe soft tissue infections caused by Streptococcus pyogenes. Front Cell Infect Microbiol 4:4. doi:10.3389/fcimb.2014.00004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Jonassen AK, Sack MN, Mjos OD, Yellon DM (2001) Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 89:1191–1198

    Article  PubMed  CAS  Google Scholar 

  54. Karbownik M, Reiter RJ (2000) Antioxidative effects of melatonin in protection against cellular damage caused by ionizing radiation. Proc Soc Exp Biol Med 225:9–22

    Article  PubMed  CAS  Google Scholar 

  55. Kim TH, Kim SJ, Lee SM (2014) Stimulation of the alpha7 nicotinic acetylcholine receptor protects against sepsis by inhibiting Toll-like receptor via phosphoinositide 3-kinase activation. J Infect Dis 209:1668–1677. doi:10.1093/infdis/jit669

    Article  PubMed  CAS  Google Scholar 

  56. Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A (2008) HMGB1: endogenous danger signaling. Mol Med 14:476–484. doi:10.2119/2008-00034.Klune

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Korkmaz B, Cuez T, Buharalioglu CK, Demiryurek AT, Sahan-Firat S, Sari AN, Tunctan B (2012) Contribution of MEK1/ERK1/2/iNOS pathway to oxidative stress and decreased caspase-3 activity in endotoxemic rats. Antiinflamm Antiallergy Agents Med Chem 11:243–252

    Article  PubMed  CAS  Google Scholar 

  58. Kumar A, Haery C, Parrillo JE (2000) Myocardial dysfunction in septic shock. Crit Care Clin 16:251–287

    Article  PubMed  CAS  Google Scholar 

  59. Lee I, Huttemann M (2014) Energy crisis: the role of oxidative phosphorylation in acute inflammation and sepsis. Biochim Biophys Acta 1842:1579–1586. doi:10.1016/j.bbadis.2014.05.031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Lew WY, Yasuda S, Yuan T, Hammond HK (1996) Endotoxin-induced cardiac depression is associated with decreased cardiac dihydropyridine receptors in rabbits. J Mol Cell Cardiol 28:1367–1371

    Article  PubMed  CAS  Google Scholar 

  61. Li C, Hua F, Ha T, Singh K, Lu C, Kalbfleisch J, Breuel KF, Ford T, Kao RL, Gao M, Ozment TR, Williams DL (2012) Activation of myocardial phosphoinositide-3-kinase p110alpha ameliorates cardiac dysfunction and improves survival in polymicrobial sepsis. PLoS ONE 7:e44712. doi:10.1371/journal.pone.0044712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Li L, Ling Y, Huang M, Yin T, Gou SM, Zhan NY, Xiong JX, Wu HS, Yang ZY, Wang CY (2015) Heparin inhibits the inflammatory response induced by LPS and HMGB1 by blocking the binding of HMGB1 to the surface of macrophages. Cytokine 72:36–42. doi:10.1016/j.cyto.2014.12.010

    Article  PubMed  CAS  Google Scholar 

  63. Li P, Guo Y, Bledsoe G, Yang ZR, Fan H, Chao L, Chao J (2015) Kallistatin treatment attenuates lethality and organ injury in mouse models of established sepsis. Crit Care 19:200. doi:10.1186/s13054-015-0919-4

    Article  PubMed  PubMed Central  Google Scholar 

  64. Li Volti G, Musumeci T, Pignatello R, Murabito P, Barbagallo I, Carbone C, Gullo A, Puglisi G (2012) Antioxidant potential of different melatonin-loaded nanomedicines in an experimental model of sepsis. Exp Biol Med (Maywood) 237:670–677. doi:10.1258/ebm.2012.011425

    Article  CAS  Google Scholar 

  65. Li XQ, Cao W, Li T, Zeng AG, Hao LL, Zhang XN, Mei QB (2009) Amlodipine inhibits TNF-alpha production and attenuates cardiac dysfunction induced by lipopolysaccharide involving PI3K/Akt pathway. Int Immunopharmacol 9:1032–1041. doi:10.1016/j.intimp.2009.04.010

    Article  PubMed  CAS  Google Scholar 

  66. Liu L, Wang P, Liang C, He D, Yu Y, Liu X (2013) Distinct effects of Nampt inhibition on mild and severe models of lipopolysaccharide-induced myocardial impairment. Int Immunopharmacol 17:342–349. doi:10.1016/j.intimp.2013.06.017

    Article  PubMed  CAS  Google Scholar 

  67. Liu L, Xie K, Chen H, Dong X, Li Y, Yu Y, Wang G, Yu Y (2014) Inhalation of hydrogen gas attenuates brain injury in mice with cecal ligation and puncture via inhibiting neuroinflammation, oxidative stress and neuronal apoptosis. Brain Res 1589:78–92. doi:10.1016/j.brainres.2014.09.030

    Article  PubMed  CAS  Google Scholar 

  68. Liu LF, Qin Q, Qian ZH, Shi M, Deng QC, Zhu WP, Zhang H, Tao XM, Liu Y (2014) Protective effects of melatonin on ischemia-reperfusion induced myocardial damage and hemodynamic recovery in rats. Eur Rev Med Pharmacol Sci 18:3681–3686

    PubMed  Google Scholar 

  69. Liu XY, Zhou XY, Hou JC, Zhu H, Wang Z, Liu JX, Zheng YQ (2015) Ginsenoside Rd promotes neurogenesis in rat brain after transient focal cerebral ischemia via activation of PI3K/Akt pathway. Acta Pharmacol Sin 36:421–428. doi:10.1038/aps.2014.156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Lorente L, Martin MM, Abreu-Gonzalez P, de la Cruz T, Ferreres J, Sole-Violan J, Labarta L, Diaz C, Jimenez A, Borreguero-Leon JM (2015) Serum melatonin levels are associated with mortality in severe septic patients. J Crit Care 30(860):e861–e866. doi:10.1016/j.jcrc.2015.03.023

    Google Scholar 

  71. Lorigados CB, Ariga SK, Batista TR, Velasco IT, Soriano FG (2015) Endotoxaemic myocardial dysfunction: the role of coronary driving pressure in subendocardial perfusion. Crit Care Resusc 17:12–22

    PubMed  Google Scholar 

  72. Lu B, Antoine DJ, Kwan K, Lundback P, Wahamaa H, Schierbeck H, Robinson M, Van Zoelen MA, Yang H, Li J, Erlandsson-Harris H, Chavan SS, Wang H, Andersson U, Tracey KJ (2014) JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proc Natl Acad Sci USA 111:3068–3073. doi:10.1073/pnas.1316925111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lyssenko V, Nagorny CL, Erdos MR, Wierup N, Jonsson A, Spegel P, Bugliani M, Saxena R, Fex M, Pulizzi N, Isomaa B, Tuomi T, Nilsson P, Kuusisto J, Tuomilehto J, Boehnke M, Altshuler D, Sundler F, Eriksson JG, Jackson AU, Laakso M, Marchetti P, Watanabe RM, Mulder H, Groop L (2009) Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet 41:82–88. doi:10.1038/ng.288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Macias M, Escames G, Leon J, Coto A, Sbihi Y, Osuna A, Acuna-Castroviejo D (2003) Calreticulin-melatonin. An unexpected relationship. Eur J Biochem 270:832–840

    Article  PubMed  CAS  Google Scholar 

  75. Mao L, Lin W, Nie T, Hui X, Gao X, Li K, Ding M, Tang X, Li P, Wang Y, Xu A, Liu P, Wu D (2014) Absence of Appl2 sensitizes endotoxin shock through activation of PI3K/Akt pathway. Cell Biosci 4:60. doi:10.1186/2045-3701-4-60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554. doi:10.1056/NEJMoa022139

    Article  PubMed  Google Scholar 

  77. Masana MI, Doolen S, Ersahin C, Al-Ghoul WM, Duckles SP, Dubocovich ML, Krause DN (2002) MT(2) melatonin receptors are present and functional in rat caudal artery. J Pharmacol Exp Ther 302:1295–1302

    Article  PubMed  CAS  Google Scholar 

  78. Mauriz JL, Collado PS, Veneroso C, Reiter RJ, Gonzalez-Gallego J (2013) A review of the molecular aspects of melatonin’s anti-inflammatory actions: recent insights and new perspectives. J Pineal Res 54:1–14. doi:10.1111/j.1600-079X.2012.01014.x

    PubMed  CAS  Google Scholar 

  79. Melendez J, Maldonado V, Ortega A (1996) Effect of melatonin on beta-tubulin and MAP2 expression in NIE-115 cells. Neurochem Res 21:653–658

    Article  PubMed  CAS  Google Scholar 

  80. Merx MW, Weber C (2007) Sepsis and the heart. Circulation 116:793–802. doi:10.1161/CIRCULATIONAHA.106.678359

    Article  PubMed  CAS  Google Scholar 

  81. Miki T, Miura T, Tanno M, Nishihara M, Naitoh K, Sato T, Takahashi A, Shimamoto K (2007) Impairment of cardioprotective PI3K-Akt signaling by post-infarct ventricular remodeling is compensated by an ERK-mediated pathway. Basic Res Cardiol 102:163–170. doi:10.1007/s00395-006-0622-3

    Article  PubMed  CAS  Google Scholar 

  82. Mukherjee D, Ghosh AK, Dutta M, Mitra E, Mallick S, Saha B, Reiter RJ, Bandyopadhyay D (2015) Mechanisms of isoproterenol-induced cardiac mitochondrial damage: protective actions of melatonin. J Pineal Res 58:275–290. doi:10.1111/jpi.12213

    Article  PubMed  CAS  Google Scholar 

  83. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103. doi:10.1038/47513

    Article  PubMed  CAS  Google Scholar 

  84. Neviere R, Fauvel H, Chopin C, Formstecher P, Marchetti P (2001) Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis. Am J Respir Crit Care Med 163:218–225. doi:10.1164/ajrccm.163.1.2003109

    Article  PubMed  CAS  Google Scholar 

  85. Ortiz F, Garcia JA, Acuna-Castroviejo D, Doerrier C, Lopez A, Venegas C, Volt H, Luna-Sanchez M, Lopez LC, Escames G (2014) The beneficial effects of melatonin against heart mitochondrial impairment during sepsis: inhibition of iNOS and preservation of nNOS. J Pineal Res 56:71–81. doi:10.1111/jpi.12099

    Article  PubMed  CAS  Google Scholar 

  86. Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE, Ognibene FP (1990) Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 113:227–242

    Article  PubMed  CAS  Google Scholar 

  87. Pasqua T, Filice E, Mazza R, Quintieri AM, Carmela Cerra M, Iannacone R, Melfi D, Indiveri C, Gattuso A, Angelone T (2015) Cardiac and hepatic role of r-AtHSP70: basal effects and protection against ischemic and sepsis conditions. J Cell Mol Med. doi:10.1111/jcmm.12491

    PubMed  PubMed Central  Google Scholar 

  88. Penna C, Brancaccio M, Tullio F, Rubinetto C, Perrelli MG, Angotti C, Pagliaro P, Tarone G (2014) Overexpression of the muscle-specific protein, melusin, protects from cardiac ischemia/reperfusion injury. Basic Res Cardiol 109:418. doi:10.1007/s00395-014-0418-9

    Article  PubMed  CAS  Google Scholar 

  89. Prabhu MM, Yalakala SK, Shetty R, Thakkar A, Sitapara T (2015) Prognosis of left ventricular systolic dysfunction in septic shock patients. J Clin Diagn Res 9:OC05–OC08. doi:10.7860/JCDR/2015/10812.5640

    PubMed  PubMed Central  Google Scholar 

  90. Rajaram MV, Ganesan LP, Parsa KV, Butchar JP, Gunn JS, Tridandapani S (2006) Akt/Protein kinase B modulates macrophage inflammatory response to Francisella infection and confers a survival advantage in mice. J Immunol 177:6317–6324

    Article  PubMed  CAS  Google Scholar 

  91. Reiter RJ, Tan DX, Gitto E, Sainz RM, Mayo JC, Leon J, Manchester LC, Vijayalaxmi Kilic E, Kilic U (2004) Pharmacological utility of melatonin in reducing oxidative cellular and molecular damage. Pol J Pharmacol 56:159–170

    PubMed  CAS  Google Scholar 

  92. Reppert SM (1997) Melatonin receptors: molecular biology of a new family of G protein-coupled receptors. J Biol Rhythms 12:528–531

    Article  PubMed  CAS  Google Scholar 

  93. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M, Early Goal-Directed Therapy Collaborative G (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377. doi:10.1056/NEJMoa010307

    Article  PubMed  CAS  Google Scholar 

  94. Rudiger A, Singer M (2007) Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med 35:1599–1608. doi:10.1097/01.CCM.0000266683.64081.02

    Article  PubMed  Google Scholar 

  95. Sanfilippo F, Corredor C, Fletcher N, Landesberg G, Benedetto U, Foex P, Cecconi M (2015) Diastolic dysfunction and mortality in septic patients: a systematic review and meta-analysis. Intensive Care Med. doi:10.1007/s00134-015-3748-7

    Google Scholar 

  96. Schmidt HB, Werdan K, Muller-Werdan U (2001) Autonomic dysfunction in the ICU patient. Curr Opin Crit Care 7:314–322

    Article  PubMed  CAS  Google Scholar 

  97. Sharshar T, Gray F, Lorin de la Grandmaison G, Hopkinson NS, Ross E, Dorandeu A, Orlikowski D, Raphael JC, Gajdos P, Annane D (2003) Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet 362:1799–1805

    Article  PubMed  CAS  Google Scholar 

  98. Shim DW, Shin HJ, Han JW, Ji YE, Jang CH, Koppula S, Kang TB, Lee KH (2015) A novel synthetic derivative of melatonin, 5-hydroxy-2′-isobutyl-streptochlorin (HIS), inhibits inflammatory responses via regulation of TRIF-dependent signaling and inflammasome activation. Toxicol Appl Pharmacol. doi:10.1016/j.taap.2015.02.006

    PubMed  Google Scholar 

  99. Siddall HK, Warrell CE, Yellon DM, Mocanu MM (2008) Ischemia-reperfusion injury and cardioprotection: investigating PTEN, the phosphatase that negatively regulates PI3K, using a congenital model of PTEN haploinsufficiency. Basic Res Cardiol 103:560–568. doi:10.1007/s00395-008-0735-y

    Article  PubMed  CAS  Google Scholar 

  100. Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18. doi:10.1161/CIRCRESAHA.108.186429

    Article  PubMed  CAS  Google Scholar 

  101. Song JQ, Teng X, Cai Y, Tang CS, Qi YF (2009) Activation of Akt/GSK-3beta signaling pathway is involved in intermedin(1-53) protection against myocardial apoptosis induced by ischemia/reperfusion. Apoptosis 14:1061–1069. doi:10.1007/s10495-009-0382-2

    Article  PubMed  CAS  Google Scholar 

  102. Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129. doi:10.1152/physrev.00006.2004

    Article  PubMed  CAS  Google Scholar 

  103. Steven S, Hausding M, Kroller-Schon S, Mader M, Mikhed Y, Stamm P, Zinssius E, Pfeffer A, Welschof P, Agdauletova S, Sudowe S, Li H, Oelze M, Schulz E, Klein T, Munzel T, Daiber A (2015) Gliptin and GLP-1 analog treatment improves survival and vascular inflammation/dysfunction in animals with lipopolysaccharide-induced endotoxemia. Basic Res Cardiol 110:6. doi:10.1007/s00395-015-0465-x

    Article  PubMed  CAS  Google Scholar 

  104. Sun B, Xiao J, Sun XB, Wu Y (2013) Notoginsenoside R1 attenuates cardiac dysfunction in endotoxemic mice: an insight into oestrogen receptor activation and PI3K/Akt signalling. Br J Pharmacol 168:1758–1770. doi:10.1111/bph.12063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Turner KL, Moore LJ, Todd SR, Sucher JF, Jones SA, McKinley BA, Valdivia A, Sailors RM, Moore FA (2011) Identification of cardiac dysfunction in sepsis with B-type natriuretic peptide. J Am Coll Surg 213:139–146. doi:10.1016/j.jamcollsurg.2011.03.027 (discussion 146–147)

    Article  PubMed  Google Scholar 

  106. van de Sandt AM, Windler R, Godecke A, Ohlig J, Zander S, Reinartz M, Graf J, van Faassen EE, Rassaf T, Schrader J, Kelm M, Merx MW (2013) Endothelial NOS (NOS3) impairs myocardial function in developing sepsis. Basic Res Cardiol 108:330. doi:10.1007/s00395-013-0330-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Vanmassenhove J, Glorieux G, Lameire N, Hoste E, Dhondt A, Vanholder R, Van Biesen W (2015) Influence of severity of illness on neutrophil gelatinase-associated lipocalin performance as a marker of acute kidney injury: a prospective cohort study of patients with sepsis. BMC Nephrol 16:18. doi:10.1186/s12882-015-0003-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Vazan R, Ravingerova T (2015) Protective effect of melatonin against myocardial injury induced by epinephrine. J Physiol Biochem 71:43–49. doi:10.1007/s13105-014-0377-5

    Article  PubMed  CAS  Google Scholar 

  109. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–251

    Article  PubMed  CAS  Google Scholar 

  110. Wang X, Liu D, Chai W, Long Y, Su L, Yang R (2014) The role of uncoupling protein-2 (UCP2) during myocardial dysfunction in a canine model of endotoxin shock. Shock. doi:10.1097/SHK.0000000000000286

    PubMed Central  Google Scholar 

  111. Whelan RS, Kaplinskiy V, Kitsis RN (2010) Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 72:19–44. doi:10.1146/annurev.physiol.010908.163111

    Article  PubMed  CAS  Google Scholar 

  112. Williams DL, Ozment-Skelton T, Li C (2006) Modulation of the phosphoinositide 3-kinase signaling pathway alters host response to sepsis, inflammation, and ischemia/reperfusion injury. Shock 25:432–439. doi:10.1097/01.shk.0000209542.76305.55

    Article  PubMed  CAS  Google Scholar 

  113. Wu JY, Tsou MY, Chen TH, Chen SJ, Tsao CM, Wu CC (2008) Therapeutic effects of melatonin on peritonitis-induced septic shock with multiple organ dysfunction syndrome in rats. J Pineal Res 45:106–116. doi:10.1111/j.1600-079X.2008.00567.x

    Article  PubMed  CAS  Google Scholar 

  114. Wu YH, Zhou JN, Van Heerikhuize J, Jockers R, Swaab DF (2007) Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer’s disease. Neurobiol Aging 28:1239–1247. doi:10.1016/j.neurobiolaging.2006.06.002

    Article  PubMed  CAS  Google Scholar 

  115. Xu C, Yi C, Wang H, Bruce IC, Xia Q (2012) Mitochondrial nitric oxide synthase participates in septic shock myocardial depression by nitric oxide overproduction and mitochondrial permeability transition pore opening. Shock 37:110–115. doi:10.1097/SHK.0b013e3182391831

    Article  PubMed  CAS  Google Scholar 

  116. Yang J, Zong X, Wu G, Lin S, Feng Y, Hu J (2015) Taurine increases testicular function in aged rats by inhibiting oxidative stress and apoptosis. Amino Acids. doi:10.1007/s00726-015-1995-0

    Google Scholar 

  117. Yang Y, Jiang S, Dong Y, Fan C, Zhao L, Yang X, Li J, Di S, Yue L, Liang G, Reiter RJ, Qu Y (2015) Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice. J Pineal Res 58:61–70. doi:10.1111/jpi.12193

    Article  PubMed  CAS  Google Scholar 

  118. Yao K, Ye P, Zhang L, Tan J, Tang X, Zhang Y (2008) Epigallocatechin gallate protects against oxidative stress-induced mitochondria-dependent apoptosis in human lens epithelial cells. Mol Vis 14:217–223

    PubMed  PubMed Central  CAS  Google Scholar 

  119. Yeung HM, Hung MW, Lau CF, Fung ML (2015) Cardioprotective effects of melatonin against myocardial injuries induced by chronic intermittent hypoxia in rats. J Pineal Res 58:12–25. doi:10.1111/jpi.12190

    Article  PubMed  CAS  Google Scholar 

  120. You W, Min X, Zhang X, Qian B, Pang S, Ding Z, Li C, Gao X, Di R, Cheng Y, Liu L (2009) Cardiac-specific expression of heat shock protein 27 attenuated endotoxin-induced cardiac dysfunction and mortality in mice through a PI3K/Akt-dependent mechanism. Shock 32:108–117. doi:10.1097/SHK.0b013e318199165d

    Article  PubMed  CAS  Google Scholar 

  121. Yu L, Sun Y, Cheng L, Jin Z, Yang Y, Zhai M, Pei H, Wang X, Zhang H, Meng Q, Zhang Y, Yu S, Duan W (2014) Melatonin receptor-mediated protection against myocardial ischemia/reperfusion injury: role of SIRT1. J Pineal Res 57:228–238. doi:10.1111/jpi.12161

    Article  PubMed  CAS  Google Scholar 

  122. Zhang B, Liu Y, Zhang JS, Zhang XH, Chen WJ, Yin XH, Qi YF (2015) Cortistatin protects myocardium from endoplasmic reticulum stress induced apoptosis during sepsis. Mol Cell Endocrinol 406:40–48. doi:10.1016/j.mce.2015.02.016

    Article  PubMed  CAS  Google Scholar 

  123. Zhang H, Liu D, Wang X, Chen X, Long Y, Chai W, Zhou X, Rui X, Zhang Q, Wang H, Yang Q (2013) Melatonin improved rat cardiac mitochondria and survival rate in septic heart injury. J Pineal Res 55:1–6. doi:10.1111/jpi.12033

    Article  PubMed  CAS  Google Scholar 

  124. Zhang HM, Zhang Y (2014) Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 57:131–146. doi:10.1111/jpi.12162

    Article  PubMed  CAS  Google Scholar 

  125. Zhang T, Lu X, Li J, Chidiac P, Sims SM, Feng Q (2012) Inhibition of Na/K-ATPase promotes myocardial tumor necrosis factor-alpha protein expression and cardiac dysfunction via calcium/mTOR signaling in endotoxemia. Basic Res Cardiol 107:254. doi:10.1007/s00395-012-0254-8

    Article  PubMed  CAS  Google Scholar 

  126. Zhang WJ, Wei H, Hagen T, Frei B (2007) Alpha-lipoic acid attenuates LPS-induced inflammatory responses by activating the phosphoinositide 3-kinase/Akt signaling pathway. Proc Natl Acad Sci USA 104:4077–4082. doi:10.1073/pnas.0700305104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Zhang Z (2015) Biomarkers, diagnosis and management of sepsis-induced acute kidney injury: a narrative review. Heart Lung Vessel 7:64–73

    PubMed  PubMed Central  Google Scholar 

  128. Zhong J, Hwang TC, Adams HR, Rubin LJ (1997) Reduced L-type calcium current in ventricular myocytes from endotoxemic guinea pigs. Am J Physiol 273:H2312–H2324

    PubMed  CAS  Google Scholar 

  129. Zhou H, Qian J, Li C, Li J, Zhang X, Ding Z, Gao X, Han Z, Cheng Y, Liu L (2011) Attenuation of cardiac dysfunction by HSPA12B in endotoxin-induced sepsis in mice through a PI3K-dependent mechanism. Cardiovasc Res 89:109–118. doi:10.1093/cvr/cvq268

    Article  PubMed  CAS  Google Scholar 

  130. Zweier JL, Flaherty JT, Weisfeldt ML (1987) Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA 84:1404–1407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from the National Natural Science Foundation of China (81170185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Sun.

Ethics declarations

Conflict of interest

None declared.

Additional information

R. An and L. Zhao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, R., Zhao, L., Xi, C. et al. Melatonin attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism. Basic Res Cardiol 111, 8 (2016). https://doi.org/10.1007/s00395-015-0526-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-015-0526-1

Keywords

Navigation