Skip to main content

Advertisement

Log in

miR-106a–363 cluster in extracellular vesicles promotes endogenous myocardial repair via Notch3 pathway in ischemic heart injury

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

An Editorial to this article was published on 19 March 2021

Abstract

Endogenous capability of the post-mitotic human heart holds great promise to restore the injured myocardium. Recent evidence indicates that the extracellular vesicles (EVs) regulate cardiac homeostasis and regeneration. Here, we investigated the molecular mechanism of EVs for self-repair. We isolated EVs from human iPSC-derived cardiomyocytes (iCMs), which were exposed to hypoxic (hEVs) and normoxic conditions (nEVs), and examined their roles in in vitro and in vivo models of cardiac injury. hEV treatment significantly improved the viability of hypoxic iCMs in vitro and cardiac function of severely injured murine myocardium in vivo. Microarray analysis of the EVs revealed significantly enriched expression of the miR-106a–363 cluster (miR cluster) in hEVs vs. nEVs. This miR cluster preserved survival and contractility of hypoxia-injured iCMs and maintained murine left-ventricular (LV) chamber size, improved LV ejection fraction, and reduced myocardial fibrosis of the injured myocardium. RNA-Seq analysis identified Jag1-Notch3-Hes1 as a target intracellular pathway of the miR cluster. Moreover, the study found that the cell cycle activator and cytokinesis genes were significantly up-regulated in the iCMs treated with miR cluster and Notch3 siRNA. Together, these results suggested that the miR cluster in the EVs stimulated cardiomyocyte cell cycle re-entry by repressing Notch3 to induce cell proliferation and augment myocardial self-repair. The miR cluster may represent an effective therapeutic approach for ischemic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

iPSC:

Induced pluripotent stem cell

iCM:

IPSC‐derived iCM

EVs:

Extracellular vesicles

nEV:

EVs from normoxic iCM

hEV:

EVs from hypoxic iCM

miR cluster:

MiR-106a–363 cluster

Core-miR:

MiR-20b, miR-92a, miR-363

MI:

Myocardial infarction

PIR:

Peri‐infarct region

EdU:

5-Ethynyl-2′-deoxyuridine

References

  1. Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB (2008) MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci USA 105:19678–19683. https://doi.org/10.1073/pnas.0811166106

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ahuja P, Sdek P, MacLellan WR (2007) Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 87:521–544. https://doi.org/10.1152/physrev.00032.2006

    Article  CAS  PubMed  Google Scholar 

  3. Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33:2697–2706. https://doi.org/10.1093/nar/gki567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Appel EA, Tibbitt MW, Webber MJ, Mattix BA, Veiseh O, Langer R (2015) Self-assembled hydrogels utilizing polymer-nanoparticle interactions. Nat Commun 6:6295. https://doi.org/10.1038/ncomms7295

    Article  CAS  PubMed  Google Scholar 

  5. Bersell K, Arab S, Haring B, Kühn B (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138:257–270. https://doi.org/10.1016/j.cell.2009.04.060

    Article  CAS  PubMed  Google Scholar 

  6. Besson A, Dowdy SF, Roberts JM (2008) CDK Inhibitors: cell cycle regulators and beyond. Dev Cell 14:159–169. https://doi.org/10.1016/j.devcel.2008.01.013

    Article  CAS  PubMed  Google Scholar 

  7. Boon RA, Iekushi K, Lechner S, Seeger T, Fischer A, Heydt S, Kaluza D, Tréguer K, Carmona G, Bonauer A, Horrevoets AJG, Didier N, Girmatsion Z, Biliczki P, Ehrlich JR, Katus HA, Müller OJ, Potente M, Zeiher AM, Hermeking H, Dimmeler S (2013) MicroRNA-34a regulates cardiac ageing and function. Nature 495:107–110. https://doi.org/10.1038/nature11919

    Article  CAS  PubMed  Google Scholar 

  8. Bruno S, Darzynkiewicz Z (1992) Cell cycle dependent expression and stability of the nuclear protein detected by Ki-67 antibody in HL-60 cells. Cell Prolif 25:31–40. https://doi.org/10.1111/j.1365-2184.1992.tb01435.x

    Article  CAS  PubMed  Google Scholar 

  9. Bunggulawa EJ, Wang W, Yin T, Wang N, Durkan C, Wang Y, Wang G (2018) Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnol 16:81. https://doi.org/10.1186/s12951-018-0403-9

    Article  CAS  Google Scholar 

  10. Cam H, Dynlacht BD (2003) Emerging roles for E2F: beyond the G1/S transition and DNA replication. Cancer Cell 3:311–316. https://doi.org/10.1016/S1535-6108(03)00080-1

    Article  CAS  PubMed  Google Scholar 

  11. Camussi G, Deregibus M-C, Bruno S, Grange C, Fonsato V, Tetta C (2011) Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res 1:98–110

    PubMed  Google Scholar 

  12. Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang M-L, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MVG, Høydal M, Autore C, Russo MA, Dorn GW, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618. https://doi.org/10.1038/nm1582

    Article  CAS  PubMed  Google Scholar 

  13. Chen C-F, Dou X-W, Liang Y-K, Lin H-Y, Bai J-W, Zhang X-X, Wei X-L, Li Y-C, Zhang G-J (2015) Notch3 overexpression causes arrest of cell cycle progression by inducing Cdh1 expression in human breast cancer cells. Cell Cycle 15:432–440. https://doi.org/10.1080/15384101.2015.1127474

    Article  CAS  PubMed Central  Google Scholar 

  14. Crosio C, Fimia GM, Loury R, Kimura M, Okano Y, Zhou H, Sen S, Allis CD, Sassone-Corsi P (2002) Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian Aurora kinases. Mol Cell Biol 22:874–885. https://doi.org/10.1128/mcb.22.3.874-885.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. D’Amato G, Luxán G, del Monte-Nieto G, Martínez-Poveda B, Torroja C, Walter W, Bochter MS, Benedito R, Cole S, Martinez F, Hadjantonakis A-K, Uemura A, Jiménez-Borreguero LJ, de la Pompa JL (2016) Sequential Notch activation regulates ventricular chamber development. Nat Cell Biol 18:7–20. https://doi.org/10.1038/ncb3280

    Article  CAS  PubMed  Google Scholar 

  16. Dash R, Kim PJ, Matsuura Y, Ikeno F, Metzler S, Huang NF, Lyons JK, Nguyen PK, Ge X, Foo CWP, McConnell MV, Wu JC, Yeung AC, Harnish P, Yang PC (2015) Manganese-enhanced magnetic resonance imaging enables in vivo confirmation of peri-infarct restoration following stem cell therapy in a porcine ischemia-reperfusion model. J Am Heart Assoc. https://doi.org/10.1161/JAHA.115.002044

    Article  PubMed  PubMed Central  Google Scholar 

  17. Domenga V, Fardoux P, Lacombe P, Monet M, Maciazek J, Krebs LT, Klonjkowski B, Berrou E, Mericskay M, Li Z, Tournier-Lasserve E, Gridley T, Joutel A (2004) Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 18:2730–2735. https://doi.org/10.1101/gad.308904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dylla L, Jedlicka P (2013) Growth-promoting role of the miR-106a∼363 Cluster in Ewing Sarcoma. PLoS ONE 8:e63032. https://doi.org/10.1371/journal.pone.0063032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Engel FB (2005) Cardiomyocyte proliferation: a platform for mammalian cardiac repair. Cell Cycle 4:1360–1363. https://doi.org/10.4161/cc.4.10.2081

    Article  CAS  PubMed  Google Scholar 

  20. Ferrari R, Rizzo P (2014) The Notch pathway: a novel target for myocardial remodelling therapy? Eur Heart J 35:2140–2145. https://doi.org/10.1093/eurheartj/ehu244

    Article  CAS  PubMed  Google Scholar 

  21. Gabisonia K, Prosdocimo G, Aquaro GD, Carlucci L, Zentilin L, Secco I, Ali H, Braga L, Gorgodze N, Bernini F, Burchielli S, Collesi C, Zandonà L, Sinagra G, Piacenti M, Zacchigna S, Bussani R, Recchia FA, Giacca M (2019) MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 569:418–422. https://doi.org/10.1038/s41586-019-1191-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grün D, Wang Y-L, Langenberger D, Gunsalus KC, Rajewsky N (2005) microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol 1:e13. https://doi.org/10.1371/journal.pcbi.0010013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hansen KD, Irizarry RA, Wu Z (2012) Removing technical variability in RNA-seq data using conditional quantile normalization. Biostat Oxf Engl 13:204–216. https://doi.org/10.1093/biostatistics/kxr054

    Article  Google Scholar 

  24. Huang W, Feng Y, Liang J, Yu H, Wang C, Wang B, Wang M, Jiang L, Meng W, Cai W, Medvedovic M, Chen J, Paul C, Davidson WS, Sadayappan S, Stambrook PJ, Yu X-Y, Wang Y (2018) Loss of microRNA-128 promotes cardiomyocyte proliferation and heart regeneration. Nat Commun 9:700. https://doi.org/10.1038/s41467-018-03019-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hulsmans M, Holvoet P (2013) MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovasc Res 100:7–18. https://doi.org/10.1093/cvr/cvt161

    Article  CAS  PubMed  Google Scholar 

  26. Ibrahim AG-E, Cheng K, Marbán E (2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep 2:606–619. https://doi.org/10.1016/j.stemcr.2014.04.006

    Article  CAS  Google Scholar 

  27. Ji Y, Chen S, Xiang B, Li Y, Li L, Wang Q (2016) Jagged1/Notch3 signaling modulates hemangioma-derived pericyte proliferation and maturation. Cell Physiol Biochem 40:895–907. https://doi.org/10.1159/000453148

    Article  CAS  PubMed  Google Scholar 

  28. Jung J-H, Fu X, Yang PC (2017) Exosomes generated from iPSC-derivatives: new direction for stem cell therapy in human heart diseases. Circ Res 120:407–417. https://doi.org/10.1161/CIRCRESAHA.116.309307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khan M, Nickoloff E, Abramova T, Johnson J, Verma SK, Krishnamurthy P, Mackie AR, Vaughan E, Garikipati VNS, Benedict C, Ramirez V, Lambers E, Ito A, Gao E, Misener S, Luongo T, Elrod J, Qin G, Houser SR, Koch WJ, Kishore R (2015) Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res 117:52–64. https://doi.org/10.1161/CIRCRESAHA.117.305990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Khuu C, Utheim TP, Sehic A (2016) The three paralogous MicroRNA clusters in development and disease, miR-17-92, miR-106a–363, and miR-106b-25. Scientifica. https://doi.org/10.1155/2016/1379643

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kim PJ, Mahmoudi M, Ge X, Matsuura Y, Toma I, Metzler S, Kooreman NG, Ramunas J, Holbrook C, McConnell MV, Blau H, Harnish P, Rulifson E, Yang PC (2015) Direct evaluation of myocardial viability and stem cell engraftment demonstrates salvage of the injured myocardium. Circ Res 116:e40-50. https://doi.org/10.1161/CIRCRESAHA.116.304668

    Article  CAS  PubMed  Google Scholar 

  32. Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP (2018) Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. In: BioMed Res. Int. https://www.hindawi.com/journals/bmri/2018/8545347/. Accessed 9 Jan 2021

  33. Kume T (2012) Ligand-dependent Notch signaling in vascular formation. Adv Exp Med Biol 727:210–222. https://doi.org/10.1007/978-1-4614-0899-4_16

    Article  CAS  PubMed  Google Scholar 

  34. Landais S, Landry S, Legault P, Rassart E (2007) Oncogenic potential of the miR-106-363 Cluster and Its implication in human T-Cell Leukemia. Cancer Res 67:5699–5707. https://doi.org/10.1158/0008-5472.CAN-06-4478

    Article  CAS  PubMed  Google Scholar 

  35. Lawson ND, Weinstein BM (2002) Arteries and veins: making a difference with zebrafish. Nat Rev Genet 3:674–682. https://doi.org/10.1038/nrg888

    Article  CAS  PubMed  Google Scholar 

  36. Leone M, Magadum A, Engel FB (2015) Cardiomyocyte proliferation in cardiac development and regeneration: a guide to methodologies and interpretations. Am J Physiol Heart Circ Physiol 309:H1237-1250. https://doi.org/10.1152/ajpheart.00559.2015

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Li Y, Jiao J, Wang J, Li Y, Qin D, Li P (2014) Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis. Mol Cell Biol 34:1788–1799. https://doi.org/10.1128/MCB.00774-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li M, Zhou Y, Xia T, Zhou X, Huang Z, Zhang H, Zhu W, Ding Q, Wang S (2018) Circulating microRNAs from the miR-106a–363 cluster on chromosome X as novel diagnostic biomarkers for breast cancer. Breast Cancer Res Treat 170:257–270. https://doi.org/10.1007/s10549-018-4757-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu XS, Chopp M, Wang XL, Zhang L, Hozeska-Solgot A, Tang T, Kassis H, Zhang RL, Chen C, Xu J, Zhang ZG (2013) MicroRNA-17-92 Cluster mediates the proliferation and survival of neural progenitor cells after stroke. J Biol Chem 288:12478–12488. https://doi.org/10.1074/jbc.M112.449025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lobb RJ, Becker M, Wen SW, Wong CSF, Wiegmans AP, Leimgruber A, Möller A (2015) Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 4:27031. https://doi.org/10.3402/jev.v4.27031

    Article  PubMed  Google Scholar 

  41. Luo W, Li G, Yi Z, Nie Q, Zhang X (2016) E2F1-miR-20a-5p/20b-5p auto-regulatory feedback loop involved in myoblast proliferation and differentiation. Sci Rep 6:27904. https://doi.org/10.1038/srep27904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. MacGrogan D, Nus M, de la Pompa JL (2010) Notch signaling in cardiac development and disease. Curr Top Dev Biol 92:333–365. https://doi.org/10.1016/S0070-2153(10)92011-5

    Article  CAS  PubMed  Google Scholar 

  43. Mercola M, Ruiz-Lozano P, Schneider MD (2011) Cardiac muscle regeneration: lessons from development. Genes Dev 25:299–309. https://doi.org/10.1101/gad.2018411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mohamed TMA, Ang Y-S, Radzinsky E, Zhou P, Huang Y, Elfenbein A, Foley A, Magnitsky S, Srivastava D (2018) Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 173:104-116.e12. https://doi.org/10.1016/j.cell.2018.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nadal-Ginard B, Ellison GM, Torella D (2014) The cardiac stem cell compartment is indispensable for myocardial cell homeostasis, repair and regeneration in the adult. Stem Cell Res 13:615–630. https://doi.org/10.1016/j.scr.2014.04.008

    Article  CAS  PubMed  Google Scholar 

  46. Niessen K, Karsan A (2008) Notch signaling in cardiac development. Circ Res 102:1169–1181. https://doi.org/10.1161/CIRCRESAHA.108.174318

    Article  CAS  PubMed  Google Scholar 

  47. Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Ruse C, Fu C, Lindow M, Stenvang J, Straarup EM, Hansen HF, Koch T, Pappin D, Hannon GJ, Kauppinen S (2011) Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet 43:371–378. https://doi.org/10.1038/ng.786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Øie E, Sandberg WJ, Ahmed MS, Yndestad A, Lærum OD, Attramadal H, Aukrust P, Eiken HG (2010) Activation of Notch signaling in cardiomyocytes during post-infarction remodeling. Scand Cardiovasc J SCJ 44:359–366. https://doi.org/10.3109/14017431.2010.511256

    Article  CAS  PubMed  Google Scholar 

  49. Olive V, Bennett MJ, Walker JC, Ma C, Jiang I, Cordon-Cardo C, Li Q-J, Lowe SW, Hannon GJ, He L (2009) miR-19 is a key oncogenic component of mir-17-92. Genes Dev 23:2839–2849. https://doi.org/10.1101/gad.1861409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pomerening JR, Sontag ED, Ferrell JE (2003) Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat Cell Biol 5:346–351. https://doi.org/10.1038/ncb954

    Article  CAS  PubMed  Google Scholar 

  51. Riau AK, Ong HS, Yam GHF, Mehta JS (2019) Sustained delivery system for stem cell-derived exosomes. Front Pharmacol. https://doi.org/10.3389/fphar.2019.01368

    Article  PubMed  PubMed Central  Google Scholar 

  52. van Rooij E, Olson EN (2009) Searching for miR-acles in cardiac fibrosis. Circ Res 104:138–140. https://doi.org/10.1161/CIRCRESAHA.108.192492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. del Rosario RCH, Damasco JRCG, Aguda BD (2016) MicroRNA inhibition fine-tunes and provides robustness to the restriction point switch of the cell cycle. Sci Rep 6:32823. https://doi.org/10.1038/srep32823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ryazansky SS, Gvozdev VA, Berezikov E (2011) Evidence for post-transcriptional regulation of clustered microRNAs in Drosophila. BMC Genomics 12:371. https://doi.org/10.1186/1471-2164-12-371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci 105:2415–2420. https://doi.org/10.1073/pnas.0712168105

    Article  PubMed  PubMed Central  Google Scholar 

  56. Santoso MR, Ikeda G, Tada Y, Jung J-H, Vaskova E, Sierra RG, Gati C, Goldstone AB, von Bornstaedt D, Shukla P, Wu JC, Wakatsuki S, Woo YJ, Yang PC (2020) Exosomes from induced pluripotent stem cell-derived cardiomyocytes promote autophagy for myocardial repair. J Am Heart Assoc 9:e014345. https://doi.org/10.1161/JAHA.119.014345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Skotheim JM, Di Talia S, Siggia ED, Cross FR (2008) Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature 454:291–296. https://doi.org/10.1038/nature07118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tachibana A, Santoso MR, Mahmoudi M, Shukla P, Wang L, Bennett M, Goldstone AB, Wang M, Fukushi M, Ebert AD, Woo YJ, Rulifson E, Yang PC (2017) Paracrine effects of the pluripotent stem cell-derived cardiac myocytes salvage the injured myocardium. Circ Res 121:e22–e36. https://doi.org/10.1161/CIRCRESAHA.117.310803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Taylor DD, Shah S (2015) Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods San Diego Calif 87:3–10. https://doi.org/10.1016/j.ymeth.2015.02.019

    Article  CAS  Google Scholar 

  60. Teng X, Chen L, Chen W, Yang J, Yang Z, Shen Z (2015) Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 37:2415–2424. https://doi.org/10.1159/000438594

    Article  CAS  Google Scholar 

  61. Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L, Snitow M, Morley M, Li D, Petrenko N, Zhou S, Lu M, Gao E, Koch WJ, Stewart KM, Morrisey EE (2015) A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med 7:279ra38. https://doi.org/10.1126/scitranslmed.3010841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659. https://doi.org/10.1038/ncb1596

    Article  CAS  PubMed  Google Scholar 

  63. Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R, Sharp PA, Jacks T (2008) Targeted deletion reveals essential and overlapping functions of the miR-17~92 family of miRNA clusters. Cell 132:875–886. https://doi.org/10.1016/j.cell.2008.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu J, Bao J, Kim M, Yuan S, Tang C, Zheng H, Mastick GS, Xu C, Yan W (2014) Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proc Natl Acad Sci USA 111:E2851-2857. https://doi.org/10.1073/pnas.1407777111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamamoto KR, Alberts BM, Benzinger R, Lawhorne L, Treiber G (1970) Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology 40:734–744. https://doi.org/10.1016/0042-6822(70)90218-7

    Article  CAS  PubMed  Google Scholar 

  66. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13:486–491. https://doi.org/10.1038/nm1569

    Article  CAS  PubMed  Google Scholar 

  67. Zhao L, Borikova AL, Ben-Yair R, Guner-Ataman B, MacRae CA, Lee RT, Burns CG, Burns CE (2014) Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc Natl Acad Sci 111:1403–1408. https://doi.org/10.1073/pnas.1311705111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhao W-X, Wu Z-M, Liu W, Lin J-H (2017) Notch2 and Notch3 suppress the proliferation and mediate invasion of trophoblast cell lines. Biol Open 6:1123–1129. https://doi.org/10.1242/bio.025767

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L (2005) Mosaic analysis with double markers in mice. Cell 121:479–492. https://doi.org/10.1016/j.cell.2005.02.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Kyuho Han (Department of Genetics, Stanford University), and Dr. Hokyung Kay Chung (Department of Biology, Stanford University) for critical discussion in this project and sharing experimental protocols and reagents.

Funding

This work was supported by National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH) [K24 HL130553; UM1 HL113456] and the American Heart Association (AHA) [18POST34080005; 19CSLOI34700047-l].

Author information

Authors and Affiliations

Authors

Contributions

JHJ design conception, perform and data analysis, manuscript writing, and final approval; GI mice surgery and perform experiments; YT scan and analysis of mice MRI; DVB mice surgery and handling; CW, SL, YJJ, MS, AY, and CO: data collection and analysis; KR, EAA, MM, and JW: provide technical resources, advice, and supervision; and PCY: design conception, data analysis, financial support, manuscript writing, supervision, and final approval.

Corresponding author

Correspondence to Phillip C. Yang.

Ethics declarations

Conflict of interest

None declared.

Additional information

A comment to this article is available at https://doi.org/10.1007/s00395-021-00857-9.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 510 KB)

Supplementary file2 (MP4 526 KB)

Supplementary file3 (MP4 516 KB)

Supplementary file4 (DOCX 9839 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, JH., Ikeda, G., Tada, Y. et al. miR-106a–363 cluster in extracellular vesicles promotes endogenous myocardial repair via Notch3 pathway in ischemic heart injury. Basic Res Cardiol 116, 19 (2021). https://doi.org/10.1007/s00395-021-00858-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-021-00858-8

Keywords

Navigation