Skip to main content
Log in

Encapsulation of nanoparticles using linear–dendritic macromolecules

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Benzyl alcohol and Rose Bengal were loaded and entrapped using linear–dendritic macromolecules by two procedures. In the first procedure, benzyl alcohol was attached to the end functional groups of linear–dendritic macromolecules by ester bonds to afford linear–dendritic–host conjugates. In the second procedure, entrapment was based on physical interactions between Rose Bengal and linear–dendritic macromolecules; this procedure is known as complexation method. Loading and binding capacity of different linear–dendritic macromolecules was investigated using 1H nuclear magnetic resonance (NMR) and UV spectroscopy methods. It was found the loading or binding capacity of linear–dendritic macromolecules depends on their generation, so that higher generations have higher loading or binding capacity. Diameter of nanocarriers was investigated using dynamic light scattering (DLS) experiments, and it was between 16 and 50 nm for different nanocarriers. Release of guest molecules from nanocarriers was evaluated at pH 1, 7.4, and 10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jansen JFGA, de Brabander-van den Berg EMM, Meijer EW (1994) Science 266:1226

    Article  CAS  Google Scholar 

  2. Jansen JFGA, Meijer EW, de Brabander-van den Berg EMM (1995) J Am Chem Soc 117:4417

    Article  CAS  Google Scholar 

  3. Newkome GR, Woosley BD, He E, Moorefield CN, Güther R, Baker GR, Escamilla GH, Merrill J, Luftmann H (1996) J Chem Soc Chem Commun 2737

  4. Liu C, Gao C, Yan D (2006) Macromolecules 39:8102

    Article  CAS  Google Scholar 

  5. Newkome GR, Moorefield CN, Baker GR, Johnson AL, Behera RK (1991) Angew Chem Int Ed Engl 30:1176

    Article  Google Scholar 

  6. Namazi H, Adeli M (2005) J Polym Sci A: Polym Chem 43:28

    Article  CAS  Google Scholar 

  7. Namazi H, Adeli M (2005) Polymer 45:10788

    Article  Google Scholar 

  8. Watkins DM, Sayed-Sweet Y, Klimash JW, Turro NJ, Tomalia DA (1997) Langmuir 13:3136

    Article  CAS  Google Scholar 

  9. Hawker CJ, Wooley KL, Fréchet JMJ (1993) J Chem Soc Perkin Trans 1:1287

    Article  Google Scholar 

  10. Vutukuri DR, Basu S, Thayumanavan S (2004) J Am Chem Soc 126:15636

    Article  CAS  Google Scholar 

  11. Paleos CM, Tsiourvas D, Sideratou Z, Tziveleka L (2004) Biomacromolecules 5:524

    Article  CAS  Google Scholar 

  12. Lim J, Simanek EE (2005) Mol Pharmaceutics 2:273

    Article  CAS  Google Scholar 

  13. Malik N, Evagorou EG, Duncan R (1997) Proc Int Symp Control Release Bioact Mater 24:107

    Google Scholar 

  14. Chandrasekar D, Sistla R, Ahmad FJ, Khar RK, Diwan PV (2007) Biomaterials 28:504

    Article  CAS  Google Scholar 

  15. Zhuo RX, Du B, Lu ZR (1999) J Control Release 57:249

    Article  CAS  Google Scholar 

  16. Chandrasekara D, Sistlaa R, Ahmadb FJ, Kharb RK, Diwan PV (2007) Biomaterials 28:504

    Article  Google Scholar 

  17. Leon JW, Kawa M, Fréchet JMJ (1996) J Am Chem Soc 118:8847

    Article  CAS  Google Scholar 

  18. Liu KK, Fréchet JMJ (1998) Polym Mater Sci Eng 79:269

    CAS  Google Scholar 

  19. Darbre T, Reymond J-L (2006) Acc Chem Res 39:925

    Article  CAS  Google Scholar 

  20. Gao C, Hou J, Yan D, Wang Z (2004) React Funct Polym 58:65

    Article  CAS  Google Scholar 

  21. Twyman LJ, Beezer AE, Esfand R, Hardy MJ, Mitchell J (1999) Tetrahedron Lett 40:1743

    Article  CAS  Google Scholar 

  22. Choi JS, Lee EJ, Choi YH, Jeong YJ, Park JS (1999) Bioconjug Chem 10:62

    Article  CAS  Google Scholar 

  23. Kim T-I, Seo HJ, Choi JS, Yoon JK, Baek J-u, Kim K, Park J-S (2005) Bioconjug Chem 16:1140

    Article  CAS  Google Scholar 

  24. de Groot FMH, Albrecht C, Koekkoek R, Beusker PH, Scheeren HW (2003) Angew Chem Int Ed Engl 42:0490

    Article  Google Scholar 

  25. Amir RJ, Pessah N, Shamis M, Shabat D (2003) Angew Chem Int Ed Engl 42:4494

    Article  CAS  Google Scholar 

  26. Li S, Szalai ML, Kevwitch RM, McGrath DV (2003) J Am Chem Soc 125:10516

    Article  CAS  Google Scholar 

  27. Meijer EW, van Genderen MHP (2003) Nature 426:128

    Article  CAS  Google Scholar 

  28. Gitsov I, (2002) Linear–dendritic block copolymers. Synthesis and characterization, “Advances in dendritic macromolecules”, Newkome, GR, Ed., Elsevier Science, Amsterdam, 5:45

  29. Gitsov I, Fréchet JMJ (1993) Macromolecules 26:6536

    Article  CAS  Google Scholar 

  30. Fréchet JMJ, Gitsov I (1995) Macromol Symp 98:441

    Google Scholar 

  31. Johnson MA, Iyer J, Hammond PT (2004) Macromolecules 37:2490

    Article  CAS  Google Scholar 

  32. Gitsov I, Zhu C (2003) J Am Chem Soc 125:11228

    Article  CAS  Google Scholar 

  33. Glauser T, Stancik CM, Moller M, Voytek S, Gast AP, Hedrick JL (2002) Macromolecules 35:5774

    Article  CAS  Google Scholar 

  34. Carnahan MA, Middleton C, Kim J, Kim T, Grinstaff MW (2002) J Am Chem Soc 124:5291

    Article  CAS  Google Scholar 

  35. Johnson MA, Santini CMB, Iyer J, Satija S, Ivkov R, Hammond PT (2002) Macromolecules 35:231

    Article  CAS  Google Scholar 

  36. Wursch A, Moller M, Glauser T, Lim LS, Voytek SB, Hedrick JL, Frank CW, Hilborn JG (2001) Macromolecules 34:6601

    Article  Google Scholar 

  37. Gitsov I, Lys T, Zhu C (2002) Amphiphilic hydrogels with highly ordered hydrophobic dendritic domains. In: Bohidar HB, Dubin, P, Osada Y(eds) Polymer gels. Fundamentals and applications, ACS Symposium Series Vol. 833. American Chemical Society, Washington DC, pp 218

    Google Scholar 

  38. Gitsov I, Zhu C (2002) Macromolecules 35:8418

    Article  CAS  Google Scholar 

  39. Gitsov I, Wooley KL, Fréchet JM (1992) Angew Chem Int Ed Engl 31:1200

    Article  Google Scholar 

  40. Fréchet JMJ, Gitsov I, Monteil Th, Rochat S, Sassi JF, Vergelati C, Yu D (1999) Chem Mater 11:1267

    Article  Google Scholar 

  41. Gitsov I, Lambrych KR, Remnant VA, Pracitto R (2000) J Polym Sci A: Polym Chem 38:2711

    Article  CAS  Google Scholar 

  42. Gitsov I, Fréchet JMJ (1996) J Am Chem Soc 118:3785

    Article  CAS  Google Scholar 

  43. Lambrych KR, Gitsov I (2003) Macromolecules 36:1068

    Article  CAS  Google Scholar 

  44. Chang Y, Kim C (2001) J Polym Sci A: Polym Chem 39:918

    Article  CAS  Google Scholar 

  45. Namazi H, Adeli M (2003) Eur Polym J 39:1491

    Article  CAS  Google Scholar 

  46. Namazi H, Adeli M (2005) Biomaterials 26:1175

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Namazi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namazi, H., Adeli, M., Zarnegar, Z. et al. Encapsulation of nanoparticles using linear–dendritic macromolecules. Colloid Polym Sci 285, 1527–1533 (2007). https://doi.org/10.1007/s00396-007-1717-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-007-1717-6

Keywords

Navigation