Skip to main content
Log in

Orientational screening of ssDNA-templated silver nanoclusters and application for bleomycin assay

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Orientational screening is a recently proposed strategy for the selection of DNA templates for silver nanoclusters (AgNCs). The feasibility of this strategy is facilitated by the accumulated experience of synthesizing DNA-templated AgNCs. Herein, a single-stranded DNA template of endowing AgNCs with high brightness (QY = 27.99%) was obtained through an orientational screening process. It was also found that double-stranded DNA rich in GC base pairs could also serve as synthesizing template for AgNCs. A facile method was then developed for the facile assay of bleomycin that might be added in illegally pronouncing products due to its low price and easy accessibility. The detection limit of this method was as low as 4.27 nM, with high sensitivity and good selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li ZY, Young NP, Vece M, Palomba S, Palmer RE, Bleloch AL, Curley BC, Johnston RL, Jiang J, Yuan J (2008) Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451:46–48. https://doi.org/10.1038/nature06470

    Article  CAS  PubMed  Google Scholar 

  2. Guo Y, Pan X, Zhang W, Hu Z, Wong KW, He Z, Li HW (2020) Label-free probes using DNA-templated silver nanoclusters as versatile reporters. Biosens Bioelectron 150:111926. https://doi.org/10.1016/j.bios.2019.111926

    Article  CAS  PubMed  Google Scholar 

  3. Zhang S, Wang K, Li KB, Shi W, Jia WP, Chen X, Sun T, Han DM (2017) A DNA-stabilized silver nanoclusters/graphene oxide-based platform for the sensitive detection of DNA through hybridization chain reaction. Biosens Bioelectron 91:374–379. https://doi.org/10.1016/j.bios.2016.12.060

    Article  CAS  PubMed  Google Scholar 

  4. Lee C, Gang J (2018) A label-free detection of NdeI endonuclease activity by using DNA-templated silver nanoclusters. J Nanosci Nanotechno 18:6339–6342. https://doi.org/10.1166/jnn.2018.15657

    Article  CAS  Google Scholar 

  5. Shen F, Qian H, Cheng Y, Xie Y, Yu H, Yao W, Pei R, Guo W, Li HW (2020) Three-way junction-promoted recycling amplification for sensitive DNA detection using highly bright DNA silver nanocluster as label-free output. Talanta 206:120216. https://doi.org/10.1016/j.talanta.2019.120216

    Article  CAS  PubMed  Google Scholar 

  6. Guo Y, Wang M, Shen F, Hu Z, Ding H, Yao W, Qian H (2020) Sensitive detection of RNA based on concatenated self-fuelled strand displacement amplification and hairpin-AgNCs. Anal Methods 13:447–452. https://doi.org/10.1039/d0ay01762k

    Article  CAS  PubMed  Google Scholar 

  7. Jie G, Tan L, Zhao Y, Wang X (2017) A novel silver nanocluster in situ synthesized as versatile probe for electrochemiluminescence and electrochemical detection of thrombin by multiple signal amplification strategy. Biosens Bioelectron 94:243–249. https://doi.org/10.1016/j.bios.2017.03.015

    Article  CAS  PubMed  Google Scholar 

  8. Jia C, Shang J, Wang Y, Bai L, Tong C, Chen Y, Zhang P (2018) Copper(II)–mediated sliver nanoclusters as a fluorescent platform for highly sensitive detection of alendronate sodium. Sensor Actuat B-chem 269:271–277. https://doi.org/10.1016/j.snb.2018.04.127

    Article  CAS  Google Scholar 

  9. Peng M, Na N, Ouyang J (2019) A fluorescence light-up silver nanocluster beacon modulated by metal ions and its application in telomerase-activity detection. Chem (Weinheim an der Bergstrasse, Germany) 25:3598–3605. https://doi.org/10.1002/chem.201805308

    Article  CAS  Google Scholar 

  10. Shen F, Cheng Y, Xie Y, Yu H, Yao W, Li HW, Guo Y, Qian H (2019) DNA-silver nanocluster probe for norovirus RNA detection based on changes in secondary structure of nucleic acids. Anal Biochem 583:113365. https://doi.org/10.1016/j.ab.2019.113365

    Article  CAS  PubMed  Google Scholar 

  11. Zhang X, Zhang Q, Liu Y, Wei X (2020) A DNAzyme-mediated logic gate system based on Ag(I)-cysteine. Analyst 145:6572–6578. https://doi.org/10.1039/d0an01315c

    Article  CAS  PubMed  Google Scholar 

  12. Zhou XH, Kong DM, Shen HX (2010) Ag+ and cysteine quantitation based on G-quadruplex-hemin DNAzymes disruption by Ag+. Anal Chem 82:789–793. https://doi.org/10.1021/ac902421u

    Article  CAS  PubMed  Google Scholar 

  13. Guo Y, Shen F, Cheng Y, Yu H, Xie Y, Yao W, Pei R, Qian H, Li HW (2020) DNA-hairpin-templated silver nanoclusters: a study on stem sequence. J Phys Chem B 124:1592–1601. https://doi.org/10.1021/acs.jpcb.9b09741

    Article  CAS  PubMed  Google Scholar 

  14. Guo Y, Zhang Y, Pei R, Cheng Y, Xie Y, Yu H, Yao W, Li HW, Qian H (2019) Detecting the adulteration of antihypertensive health food using G-insertion enhanced fluorescent DNA-AgNCs. Sensor Actuat B-Chem 281:493–498. https://doi.org/10.1016/j.snb.2018.10.101

    Article  CAS  Google Scholar 

  15. Guo Y, Shen F, Cheng Y, Xie Y, Yu H, Yao W, Li HW, Qian H, Pei R (2018) The light-up fluorescence of AgNCs in a “DNA bulb.” Nanoscale 10:11517–11523. https://doi.org/10.1039/c8nr02575d

    Article  CAS  PubMed  Google Scholar 

  16. Richards CI, Choi S, Hsiang JC, Antoku Y, Vosch T, Bongiorno A, Tzeng YL, Dickson RM (2008) Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc 130:5038–5039. https://doi.org/10.1021/ja8005644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Llevot A, Astruc D (2012) Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem Soc Rev 41:242–257. https://doi.org/10.1039/c1cs15080d

    Article  CAS  PubMed  Google Scholar 

  18. Kong RM, Sun NN, Qu F, Wu H, Wang H, You J (2015) Sensitive fluorescence “turn-on” detection of bleomycin based on a superquenched perylene–DNA complex. RSC Adv 5:86849–86854. https://doi.org/10.1039/C5RA18227A

    Article  CAS  Google Scholar 

  19. Liu X, Na W, Liu Q, Su X (2018) A novel label-free fluorescent sensor for highly sensitive detection of bleomycin based on nitrogen-doped graphene quantum dots. Anal Chim Acta 1028:45–49. https://doi.org/10.1016/j.aca.2018.04.038

    Article  CAS  PubMed  Google Scholar 

  20. Blum RH, Carter SK, Agre K (1973) A clinical review of bleomycin–a new antineoplastic agent. Cancer 31:903–914. https://doi.org/10.1002/1097-0142(197304)31:4%3c903::AID-CNCR2820310422%3e3.0.CO;2-N

    Article  CAS  PubMed  Google Scholar 

  21. Imhof RL, Tollefson MM (2019) Bleomycin-induced flagellate dermatitis. Mayo Clin Proc 94:371–372. https://doi.org/10.4274/tjh.galenos.2019.2018.0317

    Article  PubMed  Google Scholar 

  22. Ma L, Han X, Xia L, Kong RM, Qu F (2018) A G-triplex based molecular beacon for label-free fluorescence “turn-on” detection of bleomycin. Analyst 143:5474–5480. https://doi.org/10.1039/c8an01208c

    Article  CAS  PubMed  Google Scholar 

  23. Galm U, Hager MH, Van Lanen SG, Ju J, Thorson JS, Shen B (2005) Antitumor antibiotics: bleomycin, enediynes, and mitomycin. Chem Rev 105:739–758. https://doi.org/10.1021/cr030117g

    Article  CAS  PubMed  Google Scholar 

  24. Giroux RA, Hecht SM (2010) Characterization of bleomycin cleavage sites in strongly bound hairpin DNAs. J Am Chem Soc 132:16987–16996. https://doi.org/10.1021/ja107228c

    Article  CAS  PubMed  Google Scholar 

  25. Chen J, Stubbe J (2005) Bleomycins: towards better therapeutics. Nat Rev Cancer 5:102–112. https://doi.org/10.1038/nrc1547

    Article  CAS  PubMed  Google Scholar 

  26. Liu J, Liu Z, Hu X, Kong L, Liu S (2008) Fluorescence quenching method for the determination of bleomycins A5 and A2 with halofluorescein dyes. Lumin J Biol Chem Lumin 23:1–6. https://doi.org/10.1002/bio.1007

    Article  CAS  Google Scholar 

  27. Nagase T, Uozumi N, Ishii S, Kita Y, Yamamoto H, Ohga E, Ouchi Y, Shimizu T (2002) A pivotal role of cytosolic phospholipase A(2) in bleomycin-induced pulmonary fibrosis. Nat Med 8:480–484. https://doi.org/10.1038/nm0502-480

    Article  CAS  PubMed  Google Scholar 

  28. Sun M, Zhu Y, Yan K, Zhang J (2019) Dual-mode visible light-induced aptasensing platforms for bleomycin detection based on CdS-In2S3 heterojunction. Biosens Bioelectron 145:111712. https://doi.org/10.1016/j.bios.2019.111712

  29. Liu Z, Chen W, Han Y, Ouyang J, Chen M, Hu S, Deng L, Liu YN (2017) A label-free sensitive method for membrane protein detection based on aptamer and AgNCs transfer. Talanta 175:470–476. https://doi.org/10.1016/j.talanta.2017.07.071

    Article  CAS  PubMed  Google Scholar 

  30. Lin X, Hao Z, Wu H, Zhao M, Gao X, Wang S, Liu Y (2019) A ratiometric fluorescent nanoprobe consisting of ssDNA-templated silver nanoclusters for detection of histidine/cysteine, and the construction of combinatorial logic circuits. Mikrochim Acta 186:648. https://doi.org/10.1007/s00604-019-3749-2

    Article  CAS  PubMed  Google Scholar 

  31. Yan X, Sun J, Zhao XE, Wang R, Wang X, Zuo YN, Liu W, Kong R, Zhu S (2018) Molecular beacon-templated silver nanoclusters as a fluorescent probe for determination of bleomycin via DNA scission. Mikrochim Acta 185:403. https://doi.org/10.1007/s00604-018-2939-7

    Article  CAS  PubMed  Google Scholar 

  32. Li J, Zhong X, Zhang H, Le XC, Zhu JJ (2012) Binding-induced fluorescence turn-on assay using aptamer-functionalized silver nanocluster DNA probes. Anal Chem 84:5170–5174. https://doi.org/10.1021/ac3006268

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (No. 2017YFC1601704).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongwei Zhang or Weirong Yao.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.7 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Pan, X., Cheng, Y. et al. Orientational screening of ssDNA-templated silver nanoclusters and application for bleomycin assay. Colloid Polym Sci 299, 1643–1649 (2021). https://doi.org/10.1007/s00396-021-04890-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04890-x

Keywords

Navigation