Skip to main content
Log in

How does processing in supercritical carbon dioxide influence the Nafion film properties?

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We address the effect of exposure to sc CO2 on the properties of Nafion membranes. A simple model is proposed to describe the pressure-induced reorganization of the phase-separated matrix. The model predicts that the cylindrical ionic pores in Nafion restructure under pressure applied: wider pores shrink in diameter to a larger degree than narrower ones. As a result, the pores ensemble becomes more monodisperse and narrower as a whole, which should determine detectable changes in the transport properties. The consistency of the model predictions with the main experimental observations was checked. In particular, the membranes were exposed to sc CO2 at 45 °C and pressures ranging from 20 to 750 bar. The modified samples demonstrate the lower water uptake, the higher the pressure during the treatment. This observation correlates well with the cylindrical channels becoming more monodisperse and narrower. Moreover, both proton conductivity and relative crystallinity increase with increasing pressure from 96 to 105 mS/cm and from 20 to 22%, respectively. Methanol permeability decreases from 16 × 10–7 cm2/s for pure Nafion to 10 × 10–7 cm2/s for the treated membrane. DSC measurements reveal larger fraction of bound water for the modified films. Apparently, the bound water is sufficient to ensure high proton conductivity. The improved selectivity is explained by the narrower channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kondratenko MS, Elmanovich IV, Gallyamov MO (2017) Polymer materials for electrochemical applications: Processing in supercritical fluids. J Supercrit Fluids 127:229–246. https://doi.org/10.1016/j.supflu.2017.03.011

    Article  CAS  Google Scholar 

  2. Jiang R, Zhang Y, Swier S, Wei X, Erkey C, Kunz HR, Fenton JM (2005) Preparation via Supercritical Fluid Route of Pd-Impregnated Nafion Membranes which Exhibit Reduced Methanol Crossover for DMFC. Electrochem Solid State Lett 8:A611–A615. https://doi.org/10.1149/1.2050527

    Article  CAS  Google Scholar 

  3. Kim D, Sauk J, Byun J, Lee KS, Kim H (2007) Palladium composite membranes using supercritical CO2 impregnation method for direct methanol fuel cells. Solid State Ion 178:865–870. https://doi.org/10.1016/j.ssi.2007.02.034

    Article  CAS  Google Scholar 

  4. Iwai Y, Ikemoto Sh, Haramaki K, Hattori R, Yonezawa S (2014) Influence of ligands of palladium complexes on palladium/Nafion composite membranes for direct methanol fuel cells by supercritical CO2 impregnation method. J Supercrit Fluids 94:48–58. https://doi.org/10.1016/j.supflu.2014.06.015

    Article  CAS  Google Scholar 

  5. Gribov EN, Parkhomchuk EV, Krivobokov IM, Darr JA, Okunev AG (2007) Supercritical CO2 assisted synthesis of highly selective nafion-zeolite nanocomposite membranes for direct methanol fuel cells. J Membr Sci 297:1–4. https://doi.org/10.1016/j.memsci.2007.03.020

    Article  CAS  Google Scholar 

  6. Zhu Y, Mai J, Li H, Tang J, Yuan WZ, Zhang Y (2014) Enhanced stability of PFSA membranes for fuel cells: Combined effect between supercritical carbon dioxide treatment and radical scavenger incorporation. Polym Degrad Stab 107:106–112. https://doi.org/10.1016/j.polymdegradstab.2014.05.006

    Article  CAS  Google Scholar 

  7. Su L, Li L, Li H, Tang J, Zhang Y, Yu W, Zho Ch (2009) Preparation of polysiloxane modified perfluorosulfonic acid composite membranes assisted by supercritical carbon dioxide for direct methanol fuel cell. J Power Sources 194:220–225. https://doi.org/10.1016/j.jpowsour.2009.04.070

    Article  CAS  Google Scholar 

  8. Su L, Pei S, Li L, Li H, Zhang Y, Yu W, Zhou Ch (2009) Preparation of polysiloxane/perfluorosulfonic acid nanocomposite membranes in supercritical carbon dioxide system for direct methanol fuel cell. Int J Hydrog Energy 34:6892–6901. https://doi.org/10.1016/j.ijhydene.2009.05.145

    Article  CAS  Google Scholar 

  9. Sauk J, Byun J, Kim H (2004) Grafting of styrene on to Nafion membranes using supercritical CO2 impregnation for direct methanol fuel cells. J Power Sources 132:59–63. https://doi.org/10.1016/j.jpowsour.2004.01.041

    Article  CAS  Google Scholar 

  10. Sizov VE, Zefirov VV, Abramchuk SS, Korlyukov AA, Kondratenko MS, Vasil’ev VG, Gallyamov MO (2020) Composite Nafion-based membranes with nanosized tungsten oxides prepared in supercritical carbon dioxide. J Membr Sci 609:118244. https://doi.org/10.1016/j.memsci.2020.118244

    Article  CAS  Google Scholar 

  11. Pigaleva MA, Elmanovich IV, Kononevich YN, Gallyamov MO, Muzafarov AM (2015) A biphase H2O/CO2 system as a versatile reaction medium for organic synthesis. RSC Adv 5:103573–103608. https://doi.org/10.1039/c5ra18469j

    Article  CAS  Google Scholar 

  12. Elmanovich IV, Zefirov VV, Sizov VE, Kondratenko MS, Gallyamov MO (2019) Polymer-Inorganic Composites Based on Celgard Matrices Obtained from Solutions of (Aminopropyl)triethoxysilane in Supercritical Carbon Dioxide. Doklady Phys Chem 485:53–57. https://doi.org/10.1134/S0012501619040018

    Article  CAS  Google Scholar 

  13. Zefirov VV, Sizov VE, Kondratenko MS, Elmanovich IV, Abramchuk SS, Sergeyev VG, Gallyamov MO (2019) Celgard-silica composite membranes with enhanced wettability and tailored pore sizes prepared by supercritical carbon dioxide assisted impregnation with silanes. J Supercrit Fluids 150:56–64. https://doi.org/10.1016/j.supflu.2019.04.015

    Article  CAS  Google Scholar 

  14. Simonov AS, Kondratenko MS, Elmanovich IV, Sizov VE, Kharitonova EP, Abramchuk SS, Nikolaev AYu, Fedosov DA, Gallyamov MO, Khokhlov AR (2018) Modification of Nafion with silica nanoparticles in supercritical carbon dioxide for electrochemical applications. J Membr Sci 564:106–114. https://doi.org/10.1016/j.memsci.2018.06.042

    Article  CAS  Google Scholar 

  15. Sizov VE, Kondratenko MS, Gallyamov MO (2018) Ion transport properties of porous polybenzimidazole membranes for vanadium redox flow batteries obtained via supercritical drying of swollen polymer films. J Appl Polym Sci 135:46262. https://doi.org/10.1002/app.46262

    Article  CAS  Google Scholar 

  16. Sizov VE, Kondratenko MS, Gallyamov MO, Stevenson KJ (2018) Advanced porous polybenzimidazole membranes for vanadium redox batteries synthesized via a supercritical phase-inversion method. J Supercrit Fluids 137:111–117. https://doi.org/10.1016/j.supflu.2018.03.018

    Article  CAS  Google Scholar 

  17. Su L, Li L, Li H, Zhang Y, Yu W, Zhou Ch (2009) Perfluorosulfonic acid membranes treated by supercritical carbon dioxide method for direct methanol fuel cell application. J Membr Sci 335:118–125. https://doi.org/10.1016/j.memsci.2009.03.006

    Article  CAS  Google Scholar 

  18. Li L, Su L, Zhang Y (2012) Enhanced performance of supercritical CO2 treated Nafion 212 membranes for direct methanol fuel cells. Int J Hydrog Energy 37:4439–4447. https://doi.org/10.1016/j.ijhydene.2011.11.110

    Article  CAS  Google Scholar 

  19. Ayazo JCP, Suleiman D (2012) Supercritical Fluid Processing of Nafion® Membranes: Methanol Permeability and Proton Conductivity. J Appl Polym Sci 124:145–154. https://doi.org/10.1002/app.35098

    Article  CAS  Google Scholar 

  20. Cai Zh, Li L, Su L, Zhang Y (2012) Supercritical carbon dioxide treated Nafion 212 commercial membranes for direct methanol fuel cells. Electrochem Commun 14:9–12. https://doi.org/10.1016/j.elecom.2011.09.022

    Article  CAS  Google Scholar 

  21. Guerrero-Gutiérrez EMA, Suleiman D (2013) Supercritical Fluid CO2 Processing and Counter Ion Substitution of Nafion® Membranes. J Appl Polym Sci 129:73–85. https://doi.org/10.1002/app.38689

    Article  CAS  Google Scholar 

  22. Shenoy SL, Fujiwara T, Wynne KJ (2003) Quantifying Plasticization and Melting Behavior of Poly(vinylidene fluoride) in Supercritical CO2 Utilizing a Linear Variable Differential Transformer. Macromolecules 36:3380–3385. https://doi.org/10.1021/ma025929d

    Article  CAS  Google Scholar 

  23. Chiou JS, Barlow JW, Paul DR (1985) Polymer crystallization induced by sorption of CO2 gas. J Appl Polym Sci 30:3911–3924. https://doi.org/10.1002/app.1985.070300929

    Article  CAS  Google Scholar 

  24. Handa YP, Zhang Zh, Roovers J (2001) Compressed-Gas-Induced Crystallization in tert-Butyl Poly(ether ether ketone). J Polym Sci B Polym Phys 39:1505–1512. https://doi.org/10.1002/polb.1122

    Article  CAS  Google Scholar 

  25. Mauritz KA, Moore RB (2004) State of Understanding of Nafion. Chem Rev 104:4535–4586. https://doi.org/10.1021/cr0207123

    Article  CAS  PubMed  Google Scholar 

  26. Hensley JE, Way JD, Dec SF, Abney KD (2007) The effects of thermal annealing on commercial Nafion® membranes. J Membr Sci 298:190–201. https://doi.org/10.1016/j.memsci.2007.04.019

    Article  CAS  Google Scholar 

  27. Kusoglu A, Weber AZ (2017) New Insights into Perfluorinated Sulfonic-Acid Ionomers. Chem Rev 117:987–1104. https://doi.org/10.1021/acs.chemrev.6b00159

    Article  CAS  PubMed  Google Scholar 

  28. Gloukhovski R, Freger V, Tsur Y (2018) Understanding methods of preparation and characterization of pore-filling polymer composites for proton exchange membranes: a beginner’s guide. Rev Chem Eng 34:455–479. https://doi.org/10.1515/revce-2016-0065

    Article  Google Scholar 

  29. Karimi MB, Mohammadi F, Hooshyari Kh (2019) Recent approaches to improve Nafion performance for fuel cell applications: A review. Int J Hydrog Energy 44:28919–28938. https://doi.org/10.1016/j.ijhydene.2019.09.096

    Article  CAS  Google Scholar 

  30. Schmidt-Rohr K, Chen Q (2008) Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat Mater 7:75–83. https://doi.org/10.1142/9789814317665_0033

    Article  CAS  PubMed  Google Scholar 

  31. Kreuer KD, Portale G (2013) A Critical Revision of the Nano-Morphology of Proton Conducting Ionomers and Polyelectrolytes for Fuel Cell Applications. Adv Funct Mater 23:5390–5397. https://doi.org/10.1002/adfm.201300376

    Article  CAS  Google Scholar 

  32. Narducci R, Knauth Ph, Chailan JF, Di Vona ML (2018) How to improve Nafion with tailor made annealing. RSC Adv 8:27268–27274. https://doi.org/10.1039/c8ra04808h

    Article  CAS  Google Scholar 

  33. Allen FI, Comolli LR, Kusoglu A, Modestino MA, Minor AM, Weber AZ (2015) Morphology of Hydrated As-Cast Nafion Revealed through Cryo Electron Tomography. ACS Macro Lett 4:1–5. https://doi.org/10.1021/mz500606h

    Article  CAS  Google Scholar 

  34. Elliott JA, Wu D, Paddison SJ, Moore RB (2011) A unified morphological description of Nafion membranes from SAXS and mesoscale simulations. Soft Matter 7:6820–6827. https://doi.org/10.1039/c1sm00002k

    Article  CAS  Google Scholar 

  35. Fernandez Bordín SP, Andrada HE, Carreras AC, Castellano GE, Oliveira RG, Galván Josa VM (2018) Nafion membrane channel structure studied by small-angle X-ray scattering and Monte Carlo simulations. Polymer 155:58–63. https://doi.org/10.1016/j.polymer.2018.09.014

    Article  CAS  Google Scholar 

  36. Roget SA, Kramer PL, Thomaz JE, Fayer MD (2019) Bulk-like and Interfacial Water Dynamics in Nafion Fuel Cell Membranes Investigated with Ultrafast Nonlinear IR Spectroscopy. J Phys Chem B 123:9408–9417. https://doi.org/10.1021/acs.jpcb.9b07592

    Article  CAS  PubMed  Google Scholar 

  37. Komarov PV, Khalatur PG, Khokhlov AR (2013) Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport. Beilstein J Nanotechnol 4:567–587. https://doi.org/10.3762/bjnano.4.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tomasko DL, Li H, Liu D, Han X, Wingert MJ, Lee LJ, Koelling KW (2003) A Review of CO2 Applications in the Processing of Polymers. Ind Eng Chem Res 42:6431–6456. https://doi.org/10.1021/ie030199z

    Article  CAS  Google Scholar 

  39. Kemmere MF, Meyer T (eds) (2005) Supercritical Carbon Dioxide: in Polymer Reaction Engineering. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim. https://doi.org/10.1002/3527606726

  40. Choi P, Datta R (2003) Sorption in Proton-Exchange Membranes: An Explanation of Schroeder’s Paradox. J Electrochem Soc 150:E601–E607. https://doi.org/10.1149/1.1623495

    Article  CAS  Google Scholar 

  41. Choi P, Jalani NH, Datta R (2005) Thermodynamics and Proton Transport in Nafion. I. Membrane Swelling, Sorption, and Ion-Exchange Equilibrium. J Electrochem Soc 152:E84–E89. https://doi.org/10.1149/1.1855872

    Article  CAS  Google Scholar 

  42. Kreuer KD (2013) The role of internal pressure for the hydration and transport properties of ionomers and polyelectrolytes. Solid State Ionics 252:93–101. https://doi.org/10.1016/j.ssi.2013.04.018

    Article  CAS  Google Scholar 

  43. Eikerling MH, Berg P (2011) Poroelectroelastic theory of water sorption and swelling in polymer electrolyte membranes. Soft Matter 7:5976–5990. https://doi.org/10.1039/c1sm05273j

    Article  CAS  Google Scholar 

  44. Guenthner RA, Vietor ML (1962) Surface Active Materials from Perfluorocarboxylic and Perfluorosulfonic Acids. Ind Eng Chem Prod Res Dev 1:165–169. https://doi.org/10.1021/i360003a006

    Article  CAS  Google Scholar 

  45. Peng Sh, Hung MH (2012) Fluorinated sulfonate surfactants J Fluorine Chem 133:77–85. https://doi.org/10.1016/j.jfluchem.2011.10.007

    Article  CAS  Google Scholar 

  46. Khokhlov AR, Zeldovich KB, Kramarenko EY (2001) Counterions in polyelectrolytes. In: Holm C, Kekicheff P, Podgornik R (eds) Electrostatic Effects in Soft Matter and Biophysics. Kluwer Academic Publishers, Dordrecht, pp 283–316

    Chapter  Google Scholar 

  47. Galperin D, Khalatur PG, Khokhlov AR (2009) Morphology of Nafion Membranes: Microscopic and Mesoscopic Modeling. In: Paddison SJ, Promislow KS (eds) Device and Materials Modeling in PEM Fuel Cells, Topics in Applied Physics, vol 113. Springer, New York, pp 453–482. https://doi.org/10.1007/978-0-387-78691-9_17

    Chapter  Google Scholar 

  48. Su YH, Liu YL, Sun YM, Lai JY, Wang DM, Gao Y, Liu B, Guiver MD (2007) Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells. J Membr Sci 296:21–28. https://doi.org/10.1016/j.memsci.2007.03.007

    Article  CAS  Google Scholar 

  49. Hara N, Ohashi H, Ito T, Yamaguchi T (2009) Rapid Proton Conduction through Unfreezable and Bound Water in a Wholly Aromatic Pore-Filling Electrolyte Membrane. J Phys Chem B 113:4656–4663. https://doi.org/10.1021/jp810575u

    Article  CAS  PubMed  Google Scholar 

  50. Spycher N, Pruess K, Ennis-King J (2003) CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar. Geochim Cosmochim Acta 67:3015–3031. https://doi.org/10.1016/S0016-7037(03)00273-4

    Article  CAS  Google Scholar 

  51. Mukaddam M, Litwiller E, Pinnau I (2016) Gas Sorption, Diffusion, and Permeation in Nafion. Macromolecules 49:280–286. https://doi.org/10.1021/acs.macromol.5b02578

    Article  CAS  Google Scholar 

  52. Shamu A, Dunnewold M, Miedema H, Borneman Z, Nijmeijer K (2019) Permeation of supercritical CO2 through dense polymeric membranes. J Supercrit Fluids 144:63–70. https://doi.org/10.1016/j.supflu.2018.10.009

    Article  CAS  Google Scholar 

  53. Sterr J, Fleckenstein BS, Langowski HCh (2018) The Theory of Decompression Failure in Polymers During the High-Pressure Processing of Food. Food Eng Rev 10:14–33. https://doi.org/10.1007/s12393-017-9171-9

    Article  CAS  Google Scholar 

  54. Wang J, Zhang H, Yang X, Jiang S, Lv W, Jiang Z, Qiao SZ (2011) Enhanced Water Retention by Using Polymeric Microcapsules to Confer High Proton Conductivity on Membranes at Low Humidity. Adv Funct Mater 21:971–978. https://doi.org/10.1002/adfm.201001793

    Article  CAS  Google Scholar 

  55. Rhim JW, Park HB, Lee CS, Jun JH, Kim DS, Lee YM (2004) Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes. J Membr Sci 238:143–151. https://doi.org/10.1016/j.memsci.2004.03.030

    Article  CAS  Google Scholar 

  56. Siu A, Schmeisser J, Holdcroft S (2006) Effect of Water on the Low Temperature Conductivity of Polymer Electrolytes. J Phys Chem B 110:6072–6080. https://doi.org/10.1021/jp0531208

    Article  CAS  PubMed  Google Scholar 

  57. Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185:29–39. https://doi.org/10.1016/S0376-7388(00)00632-3

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Russian Science Foundation (project no. 21–13-00143, https://rscf.ru/en/project/21-13-00143/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton S. Simonov.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonov, A.S., Kharitonova, E.P., Fedosov, D.A. et al. How does processing in supercritical carbon dioxide influence the Nafion film properties?. Colloid Polym Sci 299, 1863–1875 (2021). https://doi.org/10.1007/s00396-021-04897-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04897-4

Keywords

Navigation