Skip to main content
Log in

An experimental study on emulsion polymerization for formation of monodisperse particles smaller than 50 nm

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Selections of surfactants and their concentrations are both critical factors in emulsion polymerization for preparation of polymer nanoparticles with low polydispersity (i.e., low coefficient of variation of particle sizes, CV). Our previous report revealed that employment of an anionic surfactant of sodium octadecyl sulfate (SOS), which has a critical micellization concentration (CMC) much lower than sodium dodecyl sulfate (SDS) commonly used in conventional emulsion polymerization, is very effective for reducing particle sizes without deteriorating their monodispersity. However, the mechanism on formation of small polymer particles with low polydispersity was still not clarified in the previous report. In this report, the number (NP) and CV of polymer nanoparticles formed in the polymerization of styrene (St) using SOS were compared with the conventional polymerization using SDS in a wide range of surfactant concentrations including both their CMCs. The comparisons in NP and CV were also performed in copolymerizations with methylmethacrylate (MMA) less hydrophobic than St. These experimental comparisons in NP and CV have rationalized the St/MMA copolymerization using a low-CMC surfactant highly suitable for attaining the formation of nanoparticles with low polydispersity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Harkins WD (1947) A general theory of the mechanism of emulsion polymerization. J Am Chem Soc 69:1428–1444. https://doi.org/10.1021/ja01198a053

  2. Atik SS, Thomas JK (1981) Polymerized microemulsions. J Am Chem Soc 103:4279–4280. https://doi.org/10.1021/ja00404a065

    Article  CAS  Google Scholar 

  3. Guo JS, El-Aasser MS, Vanderhoff JW (1989) Microemulsion polymerization of styrene. J Polym Sci: Part A: Polym Chem 27:691–710. https://doi.org/10.1002/pola.1989.080270228

    Article  CAS  Google Scholar 

  4. Kataoka K, Ohmura N, Kouzu M, Simamura Y, Okubo M (1995) Emulsion polymerization of styrene in a continuous Taylor vortex flow reactor. Chem Eng Sci 50(9):1409–1416. https://doi.org/10.1016/0009-2509(94)00515-S

    Article  CAS  Google Scholar 

  5. Landfester K, Bechthold N, Tiarks F, Antonietti M (1999) Formulation and stability mechanisms of polymerizable miniemulsions. Macromolucules 32:5222–5228. https://doi.org/10.1021/ma990299+

    Article  CAS  Google Scholar 

  6. Landfester K (2001) Polyreactions in miniemulsions. Macromol Rapid Commun 22:896–936. https://doi.org/10.1002/1521-3927(20010801)22:12%3C896::AID-MARC896%3E3.0.CO;2-R

    Article  Google Scholar 

  7. Schork FJ, Luo Y, Smulders W, Russum JP, Butté A, Fontenot K (2005) Miniemulsion polymerization Adv Polym Sci 175:129–255. https://doi.org/10.1007/b100115

    Article  CAS  Google Scholar 

  8. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Progress in Polym Sci 36:887–913. https://doi.org/10.1016/j.progpolymsci.2011.01.001

    Article  CAS  Google Scholar 

  9. Nunes JS, Asua JM (2013) Synthesis of high solids content low surfactant/polymer ratio nanolatexes. Langmuir 29:3895–3902. https://doi.org/10.1021/la400686e

    Article  CAS  Google Scholar 

  10. Lovell PA, Schork FJ (2020) Fundamentals of emulsion polymerization. Biomacromol 21:4396–4441. https://doi.org/10.1021/acs.biomac.0c00769

    Article  CAS  Google Scholar 

  11. Smith WV, Ewart RH (1948) Kinetics of emulsion polymerization. J Chem Phys 16:592–599. https://doi.org/10.1063/1.1746951

    Article  CAS  Google Scholar 

  12. Roe CP (1968) Surface chemistry aspects of emulsion polymerization. Ind Eng Chem 60:20–33. https://doi.org/10.1021/ie50705a006

    Article  CAS  Google Scholar 

  13. Sütterlin N (1980) Influence of monomer polarity on particle formation in emulsion polymerization. In: Fitch RM (ed) Polymer Colloids II. Plenum Press, New York, pp 583–597. https://doi.org/10.1007/978-1-4684-3635-8_29

  14. Nomura M, Horie I, Kubo M, Fujita K (1989) Kinetics and mechanism of emulsion copolymerization. IV. Kinetic modeling of emulsion copolymerization of styrene and methyl methacrylate. J Appl Polym Sci 37:1029–1050. https://doi.org/10.1002/app.1989.070370416

    Article  CAS  Google Scholar 

  15. Konno M, Terunuma Y, Saito S (1991) Polymer particle formation in styrene polymerization in aqueous media at low surfactant concentrations. J Chem Eng Jpn 24:429–437. https://doi.org/10.1252/jcej.24.429

    Article  CAS  Google Scholar 

  16. Zhendxing H, Xiaowei Y, Junliang L, Yuping Y, Ling W, Yanwei Z (2011) An investigation of the effect of sodium dodecyl sulfate on quasi-emulsifier-free emulsion polymerization for highly monodisperse polystyrene nanospheres. Eur Polym J 47:24–30. https://doi.org/10.1016/j.eurpolymj.2010.09.036

    Article  CAS  Google Scholar 

  17. Alfrey T, Bradford EB, Vanderhoff JW, Oster G (1954) J Opt Soc Am 44:603–609. https://doi.org/10.1364/JOSA.44.000603

    Article  CAS  Google Scholar 

  18. Fitch RM (1997) Order-disorder phenomena. In: Fitch RM (ed) Polymer colloids: a comprehensive introduction. Academic Press, London, pp 250–276 (Ch.9). https://doi.org/10.1016/B978-012257745-1/50011-0

  19. Antonietti M, Berton B, Göltner C, Hentze H-P (1998) Synthesis of mesoporous silica with large pores and bimodal pore size distribution by templating of polymer Latices. Adv Mater 10:154–159. https://doi.org/10.1002/(SICI)1521-4095(199801)10:2%3C154::AID-ADMA154%3E3.0.CO;2-I

    Article  CAS  Google Scholar 

  20. Jiang P, Ostojic GN, Narat R, Mittleman DM, Colvin VL (2001) The fabrication and bandgap engineering of photonic multilayers. Adv Mater 13:389–393. https://doi.org/10.1002/1521-4095(200103)13:6%3C389::AID-ADMA389%3E3.0.CO;2-L

    Article  CAS  Google Scholar 

  21. Fudouzi H, Xia Y (2003) Colloidal crystals with tunable colors and their use as photonic papers. Langmuir 19:9653–9660. https://doi.org/10.1021/la034918q

    Article  CAS  Google Scholar 

  22. Guldin S, Hüttner S, Kolle M, Welland ME, Müller-Buschbaum P, Friend RH, Steiner U, Tétreault N (2010) Dye-sensitized solar cell based on a three-dimensional photonic crystal. Nano Lett 10:2303–2309. https://doi.org/10.1021/nl904017t

    Article  CAS  PubMed  Google Scholar 

  23. Mishchenko L, Hatton B, Kolle M, Aizenberg J (2012) Patterning hierarchy in direct and inverse opal crystals. Small 8:1904–1911. https://doi.org/10.1002/smll.201102691

    Article  CAS  PubMed  Google Scholar 

  24. Ding T, Long Y, Zhong K, Song K, Yang G, Tung C-H (2014) Modifying the symmetry of colloidal photonic crystals: a way towards complete photonic bandgap. J Mater Chem C 2:4100–4111. https://doi.org/10.1039/C4TC00351A

    Article  CAS  Google Scholar 

  25. Utgenannt A, Maspero R, Fortini A, Turner R, Florescu M, Jeynes C, Kanaras AG, Muskens OL, Sear RP, Keddie JL (2016) Fast assembly of gold nanoparticles in large-area 2D nanogrids using a one-step, near-infrared radiation-assisted evaporation process. ACS Nano 10:2232–2242. https://doi.org/10.1021/acsnano.5b06886

    Article  CAS  PubMed  Google Scholar 

  26. Zhang W, Tian Y, He H, Xu L, Li W, Zhao D (2020) Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications. Natl Sci Rev 7:1702–1725. https://doi.org/10.1093/nsr/nwaa021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goodwin JW, Hearn J, Ho CC, Ottewill RH (1974) Studies on the preparation and characterisation of monodisperse polystyrene laticee. Colloid Polym Sci 252:464–471. https://doi.org/10.1007/BF01554752

    Article  CAS  Google Scholar 

  28. Goodwin JW, Ottewill RH, Pelton R (1979) Studies on the preparation and characterization of monodisperse polystyrene latices V.: The preparation of cationic lattices. Colloid Polym Sci 257:61–69. https://doi.org/10.1007/BF01539018

    Article  CAS  Google Scholar 

  29. Hearn J, Wilkinson MC, Goodall AR, Chainey M (1985) Kinetics of the surfactant-free emulsion polymerization of styrene:-the post nucleation stage. J Polym Sci 23:1869–1883. https://doi.org/10.1002/pol.1985.170230703

    Article  CAS  Google Scholar 

  30. Shouldice GTD, Vandezande GA, Rudin A (1994) Practical aspects of the emulsifier-free emulsion polymerization of styrene. EurPolym J 30:179–183. https://doi.org/10.1016/0014-3057(94)90157-0

    Article  CAS  Google Scholar 

  31. Gu S, Inukai S, Konno M (2002) Soapfree synthesis of monodisperse, micron-sized polystyrene particles in aqueous media. J Chem Eng Jpn 35:977–981. https://doi.org/10.1252/jcej.36.1231

    Article  CAS  Google Scholar 

  32. Gu S, Akama H, Nagao D, Kobayashi Y, Konno M (2004) Langmuir 20:7948–7951. https://doi.org/10.1021/la049280c

    Article  CAS  PubMed  Google Scholar 

  33. Yamada Y, Sakamoto T, Gu S, Konno M (2005) Soap-free synthesis for producing highly monodisperse, micrometer-sized polystyrene particles up to 6 μm. J Colloid Interf Sci 281:249–252. https://doi.org/10.1016/j.jcis.2004.08.030

    Article  CAS  Google Scholar 

  34. Shibuya K, Nagao D, Ishii H, Konno M (2014) Advanced soap-free emulsion polymerization for highly pure, micron-sized, monodisperse polymer particles. Polymer 55:535–539. https://doi.org/10.1016/j.polymer.2013.12.039

    Article  CAS  Google Scholar 

  35. Tauer K (2004) Latex Particles. In: Caruso F (ed) Colloids and colloid assemblies. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–51 (Ch.1). https://doi.org/10.1002/3527602100.ch1

  36. Kong XZ, Zhu X, Jiang X, Li X (2009) Preparation and full characterization of cationic latex of styrene–butyl acrylate. Polymer 50:4220–4227. https://doi.org/10.1016/j.polymer.2009.06.041

    Article  CAS  Google Scholar 

  37. Arunbabu D, Jana T (2011) Charged polystyrene nanoparticles: role of ionic comonomers structures. J Colloid Interf Sci 361:534–542. https://doi.org/10.1016/j.jcis.2011.06.005

    Article  CAS  Google Scholar 

  38. Nandiyanto ABD, Akane Y, Ogi T, Okuyama K (2012) Mesopore-free hollow silica particles with controllable diameter and shell thickness via additive-free synthesis. Langmuir 28:8616–8624. https://doi.org/10.1021/la301457v

    Article  CAS  PubMed  Google Scholar 

  39. Kim W, Choi SY, Jeon YM, Lee S-K, Kim SH (2014) Highly ordered, hierarchically porous TiO2 films via combination of two self-assembling templates. ACS Appl Mater Interfaces 6:11484–11492. https://doi.org/10.1021/am502137d

    Article  CAS  PubMed  Google Scholar 

  40. Amri F, Septiani NLW, Rezki M, Iqbal M, Yamauchi Y, Golberg D, Kaneti YV, Yuliarto B (2021) Mesoporous TiO2-based architectures as promising sensing materials towards next-generation biosensing applications. J Mater Chem B 9:1189–1207. https://doi.org/10.1039/D0TB02292F

    Article  CAS  PubMed  Google Scholar 

  41. Ishii H, Ishii M, Nagao D, Konno M (2014) Advanced synthesis for monodisperse polymer nanoparticles in aqueous media with sub-millimolar surfactants. Polymer 55:2772–2779. https://doi.org/10.1016/j.polymer.2014.04.011

    Article  CAS  Google Scholar 

  42. Ishii H, Kuwasaki N, Nagao D, Konno M (2015) Environmentally adaptable pathway to emulsion polymerization for monodisperse polymer nanoparticle synthesis. Polymer 77:64–69. https://doi.org/10.1016/j.polymer.2015.09.002

    Article  CAS  Google Scholar 

  43. Piirma I, Chen S-R (1980) Adsorption of ionic surfactants on latex particles. J Colloid Interf Sci 74:90–102. https://doi.org/10.1016/0021-9797(80)90173-3

  44. Yahata A, Ishii H, Nakamura K, Watanabe K, Nagao D (2019) Three-dimensional periodic structures of gold nanoclusters in the interstices of sub-100 nm polymer particles toward surface-enhanced Raman scattering. Adv Powd Tech 30(12):2957–2963. https://doi.org/10.1016/j.apt.2019.09.003

    Article  CAS  Google Scholar 

  45. Watanabe R, Yokoi T, Kobayashi E, Otsuka Y, Shimojima A, Okubo T, Tatsumi T (2011) Extension of size of monodisperse silica nanospheres and their well-ordered assembly. J Colloid Interf Sci 360:1–7. https://doi.org/10.1016/j.jcis.2010.09.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the technical support staff in the department of Engineering, Tohoku University, for the measurements. This research was supported by the Ministry of Education, Culture, Sports, Science and Technology (JSPS KAKENHI Grant Numbers 16K06841, 17H02744, 20K21097, and Materials Processing Science project (“Materealize”) of MEXT, Grant Number JPMXP0219192801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Nagao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 551 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishii, H., Nakazawa, H., Kuwasaki, N. et al. An experimental study on emulsion polymerization for formation of monodisperse particles smaller than 50 nm. Colloid Polym Sci 300, 397–405 (2022). https://doi.org/10.1007/s00396-022-04942-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-04942-w

Keywords

Navigation