Skip to main content
Log in

Effect of pH and electrolyte concentration on sol–gel state of semi-dilute aqueous cellulose nanofiber suspension: an interpretation based on angle-dependent DLVO theory

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Understanding rheological properties of dispersions of cellulose nanomaterials such as cellulose nanofiber (CNF) and cellulose nanocrystal (CNC) has received tremendous attentions from scientific and industrial viewpoints. To gain insight into the effect of aggregation-dispersion of CNF on the sol–gel state of aqueous CNF suspensions, simple turnover tests were performed for semi-dilute CNF suspensions as a function of pH and potassium chloride (KCl) concentration. Experimental results revealed that the gel state was confirmed around 20–100 mM KCl depending on pH, and the sol state was observed at higher or lower KCl concentrations. The upper and lower boundaries between gel and sol states were 20 and 80 mM around pH 4, and 50 and 120 mM around pH 7. These boundaries were discussed using the angle-dependent Derjaguin-Landau-Verwey-Overbeek (DLVO) theory for cylindrical particles. From the discussion, we presume that the gel of semi-dilute CNF suspension can be formed when the aggregation is allowed at the orientation angle between 45 and 90°. Aggregation at orientation angles below 30° can occur at high KCl concentration and might result in sol state due to the formation of aggregate with compact structure, which cannot allow the network structure in the whole suspension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491. https://doi.org/10.1021/bm0703970

    Article  CAS  Google Scholar 

  2. Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459. https://doi.org/10.1007/s10086-013-1365-z

    Article  CAS  Google Scholar 

  3. Reid MS, Villalobos M, Cranston ED (2017) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33:1583–1598. https://doi.org/10.1021/acs.langmuir.6b03765

    Article  PubMed  CAS  Google Scholar 

  4. Delepierre G, Vanderfleet OM, Niinivaara E et al (2021) Benchmarking cellulose nanocrystals Part II: New industrially produced materials. Langmuir la-2021–00550w. https://doi.org/10.1021/acs.langmuir.1c00550

  5. Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292:5–31. https://doi.org/10.1007/s00396-013-3112-9

    Article  CAS  Google Scholar 

  6. Tavakolian M, Jafari SM, van de Ven TGM (2020) A review on surface-functionalized cellulosic nanostructures as biocompatible antibacterial materials. Nano-Micro Lett 12:73. https://doi.org/10.1007/s40820-020-0408-4

    Article  CAS  Google Scholar 

  7. Tan HF, Ooi BS, Leo CP (2020) Future perspectives of nanocellulose-based membrane for water treatment. J Water Process Eng 37:101502. https://doi.org/10.1016/j.jwpe.2020.101502

    Article  Google Scholar 

  8. Halim A, Xu Y, Lin K-H et al (2019) Fabrication of cellulose nanofiber-deposited cellulose sponge as an oil-water separation membrane. Sep Purif Technol 224:322–331. https://doi.org/10.1016/j.seppur.2019.05.005

    Article  CAS  Google Scholar 

  9. Yadav C, Saini A, Zhang W et al (2021) Plant-based nanocellulose: a review of routine and recent preparation methods with current progress in its applications as rheology modifier and 3D bioprinting. Int J Biol Macromol 166:1586–1616. https://doi.org/10.1016/j.ijbiomac.2020.11.038

    Article  PubMed  CAS  Google Scholar 

  10. Kupnik K, Primožič M, Kokol V, Leitgeb M (2020) Nanocellulose in drug delivery and antimicrobially active materials. Polymers (Basel) 12:1–40. https://doi.org/10.3390/polym12122825

    Article  CAS  Google Scholar 

  11. Vu CM, Nguyen DD, Sinh LH et al (2017) Environmentally benign green composites based on epoxy resin/bacterial cellulose reinforced glass fiber: fabrication and mechanical characteristics. Polym Test 61:150–161. https://doi.org/10.1016/j.polymertesting.2017.05.013

    Article  CAS  Google Scholar 

  12. Liu H, Geng S, Hu P et al (2015) Study of pickering emulsion stabilized by sulfonated cellulose nanowhiskers extracted from sisal fiber. Colloid Polym Sci 293:963–974. https://doi.org/10.1007/s00396-014-3484-5

    Article  CAS  Google Scholar 

  13. Zhou H, Xu Z, Zhou G, Xu X (2021) Optical modeling of cellulose nanofibril self-assembled thin film with iridescence. Colloid Polym Sci 299:1139–1145. https://doi.org/10.1007/s00396-021-04834-5

    Article  CAS  Google Scholar 

  14. Liu S, Low Z, Xie Z, Wang H (2021) TEMPO-oxidized cellulose nanofibers: a renewable nanomaterial for environmental and energy applications. Adv Mater Technol 6:2001180. https://doi.org/10.1002/admt.202001180

    Article  CAS  Google Scholar 

  15. Kim H, Guccini V, Lu H et al (2019) Lithium ion battery separators based on carboxylated cellulose nanofibers from wood. ACS Appl Energy Mater 2:1241–1250. https://doi.org/10.1021/acsaem.8b01797

    Article  CAS  Google Scholar 

  16. Qu R, Wang Y, Li D, Wang L (2021) Rheological behavior of nanocellulose gels at various calcium chloride concentrations. Carbohydr Polym 274:118660. https://doi.org/10.1016/j.carbpol.2021.118660

    Article  PubMed  CAS  Google Scholar 

  17. Alves L, Ferraz E, Lourenço AF et al (2020) Tuning rheology and aggregation behaviour of TEMPO-oxidised cellulose nanofibrils aqueous suspensions by addition of different acids. Carbohydr Polym 237:116109. https://doi.org/10.1016/j.carbpol.2020.116109

    Article  PubMed  CAS  Google Scholar 

  18. Sato Y, Kusaka Y, Kobayashi M (2017) Charging and aggregation behavior of cellulose nanofibers in aqueous solution. Langmuir 33:12660–12669. https://doi.org/10.1021/acs.langmuir.7b02742

    Article  PubMed  CAS  Google Scholar 

  19. Lin K-H, Hu D, Sugimoto T et al (2019) An analysis on the electrophoretic mobility of cellulose nanocrystals as thin cylinders: relaxation and end effect. RSC Adv 9:34032–34038. https://doi.org/10.1039/C9RA05156B

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mendoza DJ, Hossain L, Browne C et al (2020) Controlling the transparency and rheology of nanocellulose gels with the extent of carboxylation. Carbohydr Polym 245:116566. https://doi.org/10.1016/j.carbpol.2020.116566

    Article  PubMed  CAS  Google Scholar 

  21. Araki J (2013) Electrostatic or steric? – preparations and characterizations of well-dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides. Soft Matter 9:4125. https://doi.org/10.1039/c3sm27514k

    Article  CAS  Google Scholar 

  22. Fukuzumi H, Tanaka R, Saito T, Isogai A (2014) Dispersion stability and aggregation behavior of TEMPO-oxidized cellulose nanofibrils in water as a function of salt addition. Cellulose 21:1553–1559. https://doi.org/10.1007/s10570-014-0180-z

    Article  CAS  Google Scholar 

  23. Russel WB, Saville DA, Schowalter WR (1992) Colloidal dispersions. Cambridge University Press

    Google Scholar 

  24. Mewis J, Wagner NJ (2012) Colloidal suspension rheology. Cambridge University Press

    Google Scholar 

  25. Kawasaki S, Kobayashi M (2018) Affirmation of the effect of pH on shake-gel and shear thickening of a mixed suspension of polyethylene oxide and silica nanoparticles. Colloids Surfaces A Physicochem Eng Asp 537:236–242. https://doi.org/10.1016/j.colsurfa.2017.10.033

    Article  CAS  Google Scholar 

  26. Kobayashi M, Adachi Y, Ooi S (2000) On the steady shear viscosity of coagulated suspensions. Nihon Reoroji Gakkaishi 28:143–144

    Article  CAS  Google Scholar 

  27. Tsujimoto Y, Yoshida A, Kobayashi M, Adachi Y (2013) Rheological behavior of dilute imogolite suspensions. Colloids Surfaces A Physicochem Eng Asp 435:109–114. https://doi.org/10.1016/j.colsurfa.2012.12.041

    Article  CAS  Google Scholar 

  28. Kobayashi M, Skarba M, Galletto P et al (2005) Effects of heat treatment on the aggregation and charging of Stöber-type silica. J Colloid Interface Sci 292:139–147. https://doi.org/10.1016/j.jcis.2005.05.093

    Article  PubMed  CAS  Google Scholar 

  29. Huang Y, Yamaguchi A, Pham TD, Kobayashi M (2018) Charging and aggregation behavior of silica particles in the presence of lysozymes. Colloid Polym Sci 296:145–155. https://doi.org/10.1007/s00396-017-4226-2

    Article  CAS  Google Scholar 

  30. Behrens SH, Christl DI, Emmerzael R et al (2000) Charging and aggregation properties of carboxyl latex particles: experiments versus DLVO theory. Langmuir 16:2566–2575. https://doi.org/10.1021/la991154z

    Article  CAS  Google Scholar 

  31. Kobayashi M, Yuki S, Adachi Y (2016) Effect of anionic surfactants on the stability ratio and electrophoretic mobility of colloidal hematite particles. Colloids Surfaces A Physicochem Eng Asp 510:190–197. https://doi.org/10.1016/j.colsurfa.2016.07.063

    Article  CAS  Google Scholar 

  32. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier

    Google Scholar 

  33. Derjaguin B, Landau L (1941) The theory of stability of highly charged lyophobic sols and coalescence of highly charged particles in electrolyte solutions. Acta Physicochim URSS 14:633–662

    Google Scholar 

  34. Kobayashi M, Juillerat F, Galletto P et al (2005) Aggregation and charging of colloidal silica particles: effect of particle size. Langmuir 21:5761–5769. https://doi.org/10.1021/la046829z

    Article  PubMed  CAS  Google Scholar 

  35. Kobayashi M, Nitanai M, Satta N, Adachi Y (2013) Coagulation and charging of latex particles in the presence of imogolite. Colloids Surfaces A Physicochem Eng Asp 435:139–146. https://doi.org/10.1016/j.colsurfa.2012.12.057

    Article  CAS  Google Scholar 

  36. Klein S, Fisher M, Franks G et al (2001) Effect of the interparticle pair potential on the rheological behavior of zirconia powders: II, The influence of chem-adsorbed silanes. J Am Ceram Soc 84:991–995. https://doi.org/10.1111/j.1151-2916.2001.tb00780.x

    Article  CAS  Google Scholar 

  37. Johnson SB, Franks G V, Scales PJ et al (2000) Surface chemistry – rheology relationships in concentrated mineral suspensions. 267–304

  38. Yamaguchi A, Kobayashi M, Adachi Y (2019) Yield stress of mixed suspension of silica particles and lysozymes: The effect of zeta potential and adsorbed amount. Colloids Surfaces A Physicochem Eng Asp 578:123575. https://doi.org/10.1016/j.colsurfa.2019.123575

    Article  CAS  Google Scholar 

  39. Nakamura H, Makino S, Ishii M (2021) Effects of electrostatic interaction on rheological behavior and microstructure of concentrated colloidal suspensions. Colloids Surfaces A Physicochem Eng Asp 623:126576. https://doi.org/10.1016/j.colsurfa.2021.126576

    Article  CAS  Google Scholar 

  40. Tsujimoto Y, Kobayashi M, Adachi Y (2014) Viscosity of dilute Na-montmorillonite suspensions in electrostatically stable condition under low shear stress. Colloids Surfaces A Physicochem Eng Asp 440:20–26. https://doi.org/10.1016/j.colsurfa.2012.11.005

    Article  CAS  Google Scholar 

  41. Oguzlu H, Danumah C, Boluk Y (2017) Colloidal behavior of aqueous cellulose nanocrystal suspensions. Curr Opin Colloid Interface Sci 29:46–56. https://doi.org/10.1016/j.cocis.2017.02.002

    Article  CAS  Google Scholar 

  42. Boger DV, Wierenga AM, Philipse AP, Lekkerkerker HNW (1998) Aqueous dispersions of colloidal boehmite: structure, dynamics, and yield stress of rod gels. Langmuir 7463:55–65

    Google Scholar 

  43. Sipos P, May PM, Hefter GT (2000) Carbonate removal from concentrated hydroxide solutions. Analyst 125:955–958. https://doi.org/10.1039/a910335j

    Article  CAS  Google Scholar 

  44. Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Elsevier

    Google Scholar 

  45. Ohshima H (1998) Surface charge density/surface potential relationship for a cylindrical particle in an electrolyte solution. J Colloid Interface Sci 200:291–297. https://doi.org/10.1006/jcis.1998.5433

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the financial support by JSPS KAKENHI (19H03070, 21K14939).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoyoshi Kobayashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, M., Sato, Y. & Sugimoto, T. Effect of pH and electrolyte concentration on sol–gel state of semi-dilute aqueous cellulose nanofiber suspension: an interpretation based on angle-dependent DLVO theory. Colloid Polym Sci 300, 953–960 (2022). https://doi.org/10.1007/s00396-022-04999-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-04999-7

Keywords

Navigation