Skip to main content

Advertisement

Log in

Prognostic value of olfactory evoked potentials in patients with post-infectious olfactory dysfunction

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

Prognostic assessment of patients with post-infectious olfactory dysfunction (PIOD) poses a challenge for clinicians. While there have been some studies on the prognostic factors of PIOD focusing on demographic factors, the aim of this study was to investigate whether event-related potentials (ERPs) could be used as a new predictor of olfactory recovery in PIOD.

Methods

This was a retrospective study involving patients who underwent olfactory examinations using Sniffin’ Sticks test before treatment and after 1 year of follow-up. The responder group was defined by an increase of threshold–discrimination–identification (TDI) score of ≥ 6 points. All patients underwent ERP examination and the amplitude and latency of each wave of ERPs were recorded before treatment.

Results

A total of 61 patients (age 47.50 ± 11.04 years, 27 males) were analyzed. The presence of olfactory ERPs (oERPs) was greater in the responder group than in the non-responder group (P = 0.007), while that of trigeminal ERPs (tERPs) did not differ between the two groups (P = 0.346). Logistic-regression analyses showed that factors associated with improvement of subjective olfactory function were duration (OR, 1.604; 95% CI, 1.062–2.423; P = 0.025), initial threshold (odds ratio [OR], 0.043; 95% confidence interval [CI], 0.004–0.439; P = 0.008), and latency of N1 in oERPs (OR, 1.007; 95% CI, 1.001–1.013; P = 0.021).

Conclusion

Our study shows that duration of OD, initial threshold, and latency of N1 in oERPs were associated with olfactory improvement in PIOD patients, which may provide guidance for clinicians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rawal S, Hoffman HJ, Bainbridge KE et al (2016) Prevalence and risk factors of self-reported smell and taste alterations: results from the 2011–2012 US National Health and Nutrition Examination Survey (NHANES). Chem Senses 41(1):69–76

    Article  PubMed  Google Scholar 

  2. Seubert J, Laukka EJ, Rizzuto D et al (2017) Prevalence and correlates of olfactory dysfunction in old age: a population-based study. J Gerontol A Biol Sci Med Sci 72(8):1072–1079

    Article  PubMed  PubMed Central  Google Scholar 

  3. Damm M, Temmel A, Welge-Lüssen A et al (2004) Olfactory dysfunctions. Epidemiology and therapy in Germany, Austria and Switzerland. HNO 52(2):112–120

    Article  CAS  PubMed  Google Scholar 

  4. Hummel T, Whitcroft KL, Andrews P et al (2016) Position paper on olfactory dysfunction. Rhinology 56(1):1–30

    CAS  PubMed  Google Scholar 

  5. Fokkens WJ, Lund VJ, Hopkins C et al (2020) european position paper on rhinosinusitis and nasal polyps 2020. Rhinology 58(Suppl S29):1–464

    PubMed  Google Scholar 

  6. Potter MR, Chen JH, Lobban NS et al (2020) Olfactory dysfunction from acute upper respiratory infections: relationship to season of onset. Int Forum Allergy Rhinol 10(6):706–712

    Article  PubMed  Google Scholar 

  7. Durrant DM, Ghosh S, Klein RS (2016) The olfactory bulb: an immunosensory effector organ during neurotropic viral infections. ACS Chem Neurosci 7(4):464–469

    Article  CAS  PubMed  Google Scholar 

  8. Harless L, Liang J (2016) Pharmacologic treatment for postviral olfactory dysfunction: a systematic review. Int Forum Allergy Rhinol 6(7):760–767

    Article  PubMed  Google Scholar 

  9. Kattar N, Do TM, Unis GD, et al (2020) Olfactory training for postviral olfactory dysfunction: systematic review and meta-analysis. Otolaryngol Head Neck Surg pp 194599820943550

  10. Pekala K, Chandra RK, Turner JH (2016) Efficacy of olfactory training in patients with olfactory loss: a systematic review and meta-analysis. Int Forum Allergy Rhinol 6(3):299–307

    Article  PubMed  Google Scholar 

  11. Sorokowska A, Drechsler E, Karwowski M et al (2017) Effects of olfactory training: a meta-analysis. Rhinology 55(1):17–26

    Article  CAS  PubMed  Google Scholar 

  12. Hura N, Xie DX, Choby GW et al (2020) Treatment of post-viral olfactory dysfunction: an evidence-based review with recommendations. Int Forum Allergy Rhinol 10(9):1065–1086

    Article  PubMed  Google Scholar 

  13. Hummel T, Whitcroft KL, Rueter G et al (2017) Intranasal vitamin A is beneficial in post-infectious olfactory loss. Eur Arch Otorhinolaryngol 274(7):2819–2825

    Article  PubMed  Google Scholar 

  14. Whitcroft KL, Ezzat M, Cuevas M et al (2017) The effect of intranasal sodium citrate on olfaction in post-infectious loss: results from a prospective, placebo-controlled trial in 49 patients. Clin Otolaryngol 42(3):557–563

    Article  CAS  PubMed  Google Scholar 

  15. Kim DH, Kim SW, Hwang SH et al (2017) Prognosis of olfactory dysfunction according to etiology and timing of treatment. Otolaryngol Head Neck Surg 156(2):371–377

    Article  PubMed  Google Scholar 

  16. Kobal G, Hummel T (1994) Olfactory (chemosensory) event-related potentials. Toxicol Ind Health 10(4–5):587–596

    Article  CAS  PubMed  Google Scholar 

  17. Rombaux P, Huart C, Mouraux A (2012) Assessment of chemosensory function using electroencephalographic techniques. Rhinology 50(1):13–21

    Article  PubMed  Google Scholar 

  18. Evans WJ, Cui L, Starr A (1995) Olfactory event-related potentials in normal human subjects: effects of age and gender. Electroencephalogr Clin Neurophysiol 95(4):293–301

    Article  CAS  PubMed  Google Scholar 

  19. Gudziol H, Guntinas-Lichius O (2019) Electrophysiologic assessment of olfactory and gustatory function. Handb Clin Neurol 164:247–262

    Article  PubMed  Google Scholar 

  20. Pause BM, Krauel K (2000) Chemosensory event-related potentials (CSERP) as a key to the psychology of odors. Int J Psychophysiol 36(2):105–122

    Article  CAS  PubMed  Google Scholar 

  21. Lundström JN, Olsson MJ, Schaal B et al (2006) A putative social chemosignal elicits faster cortical responses than perceptually similar odorants. Neuroimage 30(4):1340–1346

    Article  PubMed  Google Scholar 

  22. Ciurleo R, Bonanno L, De Salvo S et al (2018) Olfactory dysfunction as a prognostic marker for disability progression in multiple sclerosis: an olfactory event related potential study. PLoS ONE 13(4):e0196006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Liu J, Pinto JM, Yang L et al (2016) Gender difference in Chinese adults with post-viral olfactory disorder:a hospital-based study. Acta Otolaryngol 136(9):976–981

    Article  PubMed  Google Scholar 

  24. Hummel T, Sekinger B, Wolf SR et al (1997) “Sniffin” sticks’: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem Senses 22(1):39–52

    Article  CAS  PubMed  Google Scholar 

  25. Hummel T, Lötsch J (2010) Prognostic factors of olfactory dysfunction. Arch Otolaryngol Head Neck Surg 136(4):347–351

    Article  PubMed  Google Scholar 

  26. Lötsch J, Hummel T (2006) The clinical significance of electrophysiological measures of olfactory function. Behav Brain Res 170(1):78–83

    Article  PubMed  Google Scholar 

  27. Yang L, Wei Y, Yu D et al (2010) Olfactory and gustatory function in healthy adult Chinese subjects. Otolaryngol Head Neck Surg 143(4):554–560

    Article  PubMed  Google Scholar 

  28. Hummel T, Bensafi M, Nikolaus J et al (2007) Olfactory function in children assessed with psychophysical and electrophysiological techniques. Behav Brain Res 180(2):133–138

    Article  PubMed  Google Scholar 

  29. Gottschlich M, Hummel T (2015) Effects of handedness on olfactory event-related potentials in a simple olfactory task. Rhinology 53(2):149–153

    Article  PubMed  Google Scholar 

  30. Huart C, Rombaux P, Hummel T et al (2013) Clinical usefulness and feasibility of time-frequency analysis of chemosensory event-related potentials. Rhinology 51(3):210–221

    Article  CAS  PubMed  Google Scholar 

  31. Hummel T, Rissom K, Reden J et al (2009) Effects of olfactory training in patients with olfactory loss. Laryngoscope 119(3):496–499

    Article  PubMed  Google Scholar 

  32. Damm M, Pikart LK, Reimann H et al (2014) Olfactory training is helpful in postinfectious olfactory loss: a randomized, controlled, multicenter study. Laryngoscope 124(4):826–831

    Article  PubMed  Google Scholar 

  33. London B, Nabet B, Fisher AR et al (2008) Predictors of prognosis in patients with olfactory disturbance. Ann Neurol 63(2):159–166

    Article  PubMed  Google Scholar 

  34. Lee DY, Lee WH, Wee JH et al (2014) Prognosis of postviral olfactory loss: follow-up study for longer than one year. Am J Rhinol Allergy 28(5):419–422

    Article  PubMed  Google Scholar 

  35. Reden J, Mueller A, Mueller C et al (2006) Recovery of olfactory function following closed head injury or infections of the upper respiratory tract. Arch Otolaryngol Head Neck Surg 132(3):265–269

    Article  PubMed  Google Scholar 

  36. Hedner M, Larsson M, Arnold N et al (2010) Cognitive factors in odor detection, odor discrimination, and odor identification tasks. J Clin Exp Neuropsychol 32(10):1062–1067

    Article  PubMed  Google Scholar 

  37. Haehner A, Rodewald A, Gerber JC et al (2008) Correlation of olfactory function with changes in the volume of the human olfactory bulb. Arch Otolaryngol Head Neck Surg 134(6):621–624

    Article  PubMed  Google Scholar 

  38. Liu J, Ni D, Zhang Q (2008) Characteristics of olfactory event-related potentials in young adults with normal smell. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 22(8):352–355

    PubMed  Google Scholar 

  39. Rombaux P, Huart C, Collet S et al (2010) Presence of olfactory event-related potentials predicts recovery in patients with olfactory loss following upper respiratory tract infection. Laryngoscope 120(10):2115–2118

    Article  PubMed  Google Scholar 

  40. Rombaux P, Weitz H, Mouraux A et al (2006) Olfactory function assessed with orthonasal and retronasal testing, olfactory bulb volume, and chemosensory event-related potentials. Arch Otolaryngol Head Neck Surg 132(12):1346–1351

    Article  PubMed  Google Scholar 

  41. Stuck BA, Frey S, Freiburg C et al (2006) Chemosensory event-related potentials in relation to side of stimulation, age, sex, and stimulus concentration. Clin Neurophysiol 117(6):1367–1375

    Article  CAS  PubMed  Google Scholar 

  42. Liu J, Pinto JM, Yang L et al (2018) Evaluation of idiopathic olfactory loss with chemosensory event-related potentials and magnetic resonance imaging. Int Forum Allergy Rhinol 8(11):1315–1322

    Article  PubMed  PubMed Central  Google Scholar 

  43. Horikiri K, Kikuta S, Kanaya K et al (2017) Intravenous olfactory test latency correlates with improvement in post-infectious olfactory dysfunction. Acta Otolaryngol 137(10):1083–1089

    Article  PubMed  Google Scholar 

  44. Kikuta S, Matsumoto Y, Kuboki A et al (2016) Longer latency of sensory response to intravenous odor injection predicts olfactory neural disorder. Sci Rep 6:35361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rombaux P, Mouraux A, Keller T et al (2008) Trigeminal event-related potentials in patients with olfactory dysfunction. Rhinology 46(3):170–174

    PubMed  Google Scholar 

  46. Ren Y, Yang L, Guo Y et al (2012) Intranasal trigeminal chemosensitivity in patients with postviral and post-traumatic olfactory dysfunction. Acta Otolaryngol 132(9):974–980

    Article  PubMed  Google Scholar 

Download references

Funding

There are no financial disclosures of the authors. This study was supported by the Natural Science Foundation of China (81670903), Capital Health Research and Development of Special Fund (2018-2-2065), Beijing Hospitals Authority’ Mission Plan (SML20190601), Beijing Scholars Program (No. 051), and Capital Health Research and Development of Special Fund (2018-2-2065).

Author information

Authors and Affiliations

Authors

Contributions

YG: substantial contribution to the design of the manuscript, literature search, data analysis and interpretation. Preparing the main paper. DW: drafting the manuscript and revising it critically for important intellectual content. YW: Final approval of the manuscript. YG, ZS, LY, and JL collected the clinical data and followed up with the patients. All listed authors have approved the manuscript before submission, including the names and order of authors.

Corresponding author

Correspondence to Yongxiang Wei.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethics Committee of Beijing Anzhen Hospital, Capital Medical University, and had been performed in accordance with the ethical standards as laid down in the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Wu, D., Sun, Z. et al. Prognostic value of olfactory evoked potentials in patients with post-infectious olfactory dysfunction. Eur Arch Otorhinolaryngol 278, 3839–3846 (2021). https://doi.org/10.1007/s00405-021-06683-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-021-06683-y

Keywords

Navigation