Skip to main content

Advertisement

Log in

Functional and morphological evaluation of blue light-emitting diode-induced retinal degeneration in mice

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to evaluate a retinal degeneration (RD) model induced by exposing mice to a blue light-emitting diode (LED), which led to photoreceptor cell death.

Methods

RD was induced in BALB/c mice by exposure to a blue LED (460 nm) for 2 hours. Retinal function was examined using scotopic electroretinography (ERG). Histopathological changes were assessed by hematoxylin and eosin (H&E) staining and electron microscopy. Apoptotic cell death was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. In addition, retinal inflammation and oxidative stress were evaluated by immunohistochemistry with anti-glial fibrillary acidic protein (GFAP) and anti-8-hydroxy-2’-deoxyguanosine (8-OHdG), respectively.

Results

Scotopic ERG showed that blue LED exposure resulted in a decrease in both a-waves and b-waves in mice retinas in an illuminance-dependent manner. H&E, TUNEL assay, and electron microscopy revealed massive photoreceptor cell death by apoptosis in the central region of the retina. Retinal stress and inflammation were detected by increased expression of GFAP and by electron microscopy findings demonstrating microglia infiltration in the outer nuclear layer and subretinal space. In addition, increased labeling of 8-OHdG was observed in the retinas from blue LED exposure.

Conclusions

These results suggest that blue LED-induced RD may be a useful animal model in which to study the pathogenesis of RD, including age-related macular degeneration, and to evaluate the effects of new therapeutic agents prior to clinical trials, where oxidative stress and inflammation are the underlying RD mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gregory-Evans K, Bhattacharya SS (1998) Genetic blindness: current concepts in the pathogenesis of human outer retinal dystrophies. Trends Genet 14:103–108

    Article  CAS  PubMed  Google Scholar 

  2. Jeong E, Paik SS, Jung SW, Chun MH, Kim IB (2011) Morphological and functional evaluation of an animal model for the retinal degeneration induced by N-methyl-N-nitrosourea. Anat Cell Biol 44:314–323

    Article  PubMed  PubMed Central  Google Scholar 

  3. Papermaster DS, Windle J (1995) Death at an early age. Apoptosis in inherited retinal degenerations. Invest Ophthalmol Vis Sci 36:977–983

    CAS  PubMed  Google Scholar 

  4. Coleman HR, Chan CC, Ferris FL 3rd, Chew EY (2008) Age-related macular degeneration. Lancet 372:1835–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Klein R, Cruickshanks KJ, Nash SD, Krantz EM, Nieto FJ, Huang GH, Pankow JS, Klein BE (2010) The prevalence of age-related macular degeneration and associated risk factors. Arch Ophthalmol 128:750–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seddon JM, Chen CA (2004) The epidemiology of age-related macular degeneration. Int Ophthalmol Clin 44:17–39

    Article  PubMed  Google Scholar 

  7. Bowes C, Li T, Danciger M, Baxter LC, Applebury ML, Farber DB (1990) Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase. Nature 347:677–680

    Article  CAS  PubMed  Google Scholar 

  8. Sanyal S, De Ruiter A, Hawkins RK (1980) Development and degeneration of retina in rds mutant mice: light microscopy. J Comp Neurol 194:193–207

    Article  CAS  PubMed  Google Scholar 

  9. LaVail MM, Sidman RL, Gerhardt CO (1975) Congenic strains of RCS rats with inherited retinal dystrophy. J Hered 66:242–244

    CAS  PubMed  Google Scholar 

  10. Herrold KM (1967) Pigmentary degeneration of the retina induced by N-methyl-N-nitrosourea. An experimental study in Syrian hamsters. Arch Ophthalmol 78:650–653

    Article  CAS  PubMed  Google Scholar 

  11. Sorsby A (1941) Experimental pigmentary degeneration of the retina by sodium iodate. Br J Ophthalmol 25:58–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Noell WK, Walker VS, Kang BS, Berman S (1966) Retinal damage by light in rats. Investig Ophthalmol 5:450–473

    CAS  Google Scholar 

  13. Reme CE, Grimm C, Hafezi F, Marti A, Wenzel A (1998) Apoptotic cell death in retinal degenerations. Prog Retin Eye Res 17:443–464

    Article  CAS  PubMed  Google Scholar 

  14. Wenzel A, Grimm C, Samardzija M, Reme CE (2005) Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog Retin Eye Res 24:275–306

    Article  CAS  PubMed  Google Scholar 

  15. Marc RE, Jones BW, Watt CB, Vazquez-Chona F, Vaughan DK, Organisciak DT (2008) Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration. Mol Vis 14:782–806

    PubMed  PubMed Central  Google Scholar 

  16. Kuse Y, Ogawa K, Tsuruma K, Shimazawa M, Hara H (2014) Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light. Sci Rep 4:5223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shang YM, Wang GS, Sliney D, Yang CH, Lee LL (2014) White light-emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model. Environ Health Perspect 122:269–276

    PubMed  PubMed Central  Google Scholar 

  18. Yu Z-L, Qiu S, Chen X-C, Dai Z-H, Huang Y-C, Li Y-N, Cai R-H, Lei H-T, Gu H-Y (2014) Neuroglobin - a potential biological marker of retinal damage induced by LED light. Neuroscience 270:158–167

    Article  CAS  PubMed  Google Scholar 

  19. Ogawa K, Kuse Y, Tsuruma K, Kobayashi S, Shimazawa M, Hara H (2014) Protective effects of bilberry and lingonberry extracts against blue light-emitting diode light-induced retinal photoreceptor cell damage in vitro. BMC Complement Altern Med 14:120

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhao L, Wang C, Song D, Li Y, Song Y, Su G, Dunaief JL (2014) Systemic administration of the antioxidant/iron chelator α-lipoic acid protects against light-induced photoreceptor degeneration in the mouse retina. Invest Ophthalmol Vis Sci 55:5979–5988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ortin-Martinez A, Valiente-Soriano FJ, Garcia-Ayuso D, Alarcon-Martinez L, Jimenez-Lopez M, Bernal-Garro JM, Nieto-Lopez L, Nadal-Nicolas FM, Villegas-Perez MP, Wheeler LA, Vidal-Sanz M (2014) A novel in vivo model of focal light emitting diode-induced cone-photoreceptor phototoxicity: neuroprotection afforded by brimonidine, BDNF, PEDF or bFGF. PLoS One 9, e113798

    Article  PubMed  PubMed Central  Google Scholar 

  22. Parmeggiani F, Romano MR, Costagliola C, Semeraro F, Incorvaia C, D’Angelo S, Perri P, De Palma P, De Nadai K, Sebastiani A (2012) Mechanism of inflammation in age-related macular degeneration. Mediat Inflamm 2012:546786

    Google Scholar 

  23. Markesbery WR, Carney JM (1999) Oxidative alterations in Alzheimer’s disease. Brain Pathol 9:133–146

    Article  CAS  PubMed  Google Scholar 

  24. Pinto CC, Silva KC, Biswas SK, Martins N, De Faria JB, De Faria JM (2007) Arterial hypertension exacerbates oxidative stress in early diabetic retinopathy. Free Radic Res 41:1151–1158

    Article  CAS  PubMed  Google Scholar 

  25. Lee SH, Jeong E, Paik SS, Jeon JH, Jung SW, Kim HB, Kim M, Chun MH, Kim IB (2014) Cyanidin-3-glucoside extracted from mulberry fruit can reduce N-methyl-N-nitrosourea-induced retinal degeneration in rats. Curr Eye Res 39:79–87

    Article  CAS  PubMed  Google Scholar 

  26. Paik SS, Jeong E, Jung SW, Ha TJ, Kang S, Sim S, Jeon JH, Chun MH, Kim IB (2012) Anthocyanins from the seed coat of black soybean reduce retinal degeneration induced by N-methyl-N-nitrosourea. Exp Eye Res 97:55–62

    Article  CAS  PubMed  Google Scholar 

  27. Ding X, Patel M, Chan CC (2009) Molecular pathology of age-related macular degeneration. Prog Retin Eye Res 28:1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reme CE (2005) The dark side of light: Rhodopsin and the silent death of vision the proctor lecture. Invest Ophthalmol Vis Sci 46:2671–2682

    Article  PubMed  Google Scholar 

  29. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Green WR (1999) Histopathology of age-related macular degeneration. Mol Vis 5:27

    CAS  PubMed  Google Scholar 

  31. Combadiere C, Feumi C, Raoul W, Keller N, Rodero M, Pezard A, Lavalette S, Houssier M, Jonet L, Picard E, Debre P, Sirinyan M, Deterre P, Ferroukhi T, Cohen SY, Chauvaud D, Jeanny JC, Chemtob S, Behar-Cohen F, Sennlaub F (2007) CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest 117:2920–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee JE, Liang KJ, Fariss RN, Wong WT (2008) Ex vivo dynamic imaging of retinal microglia using time-lapse confocal microscopy. Invest Ophthalmol Vis Sci 49:4169–4176

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gupta N, Brown KE, Milam AH (2003) Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res 76:463–471

    Article  CAS  PubMed  Google Scholar 

  34. Kim IB, Kim KY, Joo CK, Lee MY, Oh SJ, Chung JW, Chun MH (1998) Reaction of muller cells after increased intraocular pressure in the rat retina. Exp Brain Res 121:419–424

    Article  CAS  PubMed  Google Scholar 

  35. O’Callaghan JP (1991) Assessment of neurotoxicity: use of glial fibrillary acidic protein as a biomarker. Biomed Environ Sci 4:197–206

    PubMed  Google Scholar 

  36. Sharma V, Mishra M, Ghosh S, Tewari R, Basu A, Seth P, Sen E (2007) Modulation of interleukin-1beta mediated inflammatory response in human astrocytes by flavonoids: implications in neuroprotection. Brain Res Bull 73:55–63

    Article  CAS  PubMed  Google Scholar 

  37. Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L (2014) The role of oxidative stress during inflammatory processes. Biol Chem 395:203–230

    Article  CAS  PubMed  Google Scholar 

  38. Rattner A, Nathans J (2006) Macular degeneration: recent advances and therapeutic opportunities. Nat Rev Neurosci 7:860–872

    Article  CAS  PubMed  Google Scholar 

  39. Brennan LA, Kantorow M (2009) Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations. Exp Eye Res 88:195–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fletcher AE (2010) Free radicals, antioxidants and eye diseases: evidence from epidemiological studies on cataract and age-related macular degeneration. Ophthalmic Res 44:191–198

    Article  CAS  PubMed  Google Scholar 

  41. Militante J, Lombardini JB (2004) Age-related retinal degeneration in animal models of aging: possible involvement of taurine deficiency and oxidative stress. Neurochem Res 29:151–160

    Article  CAS  PubMed  Google Scholar 

  42. Chamorro E, Bonnin-Arias C, Perez-Carrasco MJ, Munoz de Luna J, Vazquez D, Sanchez-Ramos C (2013) Effects of light-emitting diode radiations on human retinal pigment epithelial cells in vitro. Photochem Photobiol 89:468–473

    Article  CAS  PubMed  Google Scholar 

  43. Roehlecke C, Schaller A, Knels L, Funk RH (2009) The influence of sublethal blue light exposure on human RPE cells. Mol Vis 15:1929–1938

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mukai R, Akiyama H, Tajika Y, Shimoda Y, Yorifuji H, Kishi S (2012) Functional and morphologic consequences of light exposure in primate eyes. Invest Ophthalmol Vis Sci 53:6035–6044

    Article  PubMed  Google Scholar 

  45. Behar-Cohen F, Martinsons C, Viénot F, Zissis G, Barlier-Salsi A, Cesarini JP, Enouf O, Garcia M, Picaud S, Attia D (2011) Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Prog Retin Eye Res 30:239–257

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Beom Kim.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the Catholic Ethics Committee of the Catholic University of Korea, Seoul, which conform to the National Institutes of Health (NIH) guidelines for the Care and Use of Laboratory Animals (NIH publication no. 80–23), as revised in 1996, or the practice at which the studies were conducted.

Funding

Financial support was provided by the Catholic Medical Center Research Foundation in program year 2013 and by the National Research Foundation (NRF) of Korea in the form of Basic Science Research Program no. 2013R1A2A2A01014070.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; or expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

This work was supported by the Catholic Medical Center Research Foundation in program year 2013 and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2013R1A2A2A01014070).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, G.H., Kim, H.I., Paik, SS. et al. Functional and morphological evaluation of blue light-emitting diode-induced retinal degeneration in mice. Graefes Arch Clin Exp Ophthalmol 254, 705–716 (2016). https://doi.org/10.1007/s00417-015-3258-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3258-x

Keywords

Navigation