Skip to main content
Log in

Frictional receding contact problem of a functionally graded layer resting on a homogeneous coated half-plane

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper investigates the frictional receding contact problem between a functionally graded (FG) layer resting on a homogeneous coated half-plane when the system indented by a rigid cylindrical punch. The shear modulus of the upper graded layer is assumed to vary exponentially in the depth direction. Upon loading, the advancing contact and receding contact occur between the FG layer and rigid punch and between the FG layer and coating, respectively. Under the assumptions of sliding contact, the shear and normal contact stresses are related through Coulomb’s law of friction. The contact problem is converted analytically using Fourier integral transforms and the proper boundary conditions into a system of two singular integral equations. The unknowns of these integral equations consist of the contact stresses under the punch and between the FG layer and coating as well as the dimensions of the contact zones. The Gauss–Jacobi quadrature collocation method is then employed to transform the singular integral equations into a system of nonlinear equations which are solved using an appropriate iterative algorithm to compute the contact stresses and the dimensions of the contact areas. The main purpose of this paper is to examine the influence of several parameters on the upper and lower contact stresses, which include the material inhomogeneity parameter, friction coefficient, punch radius, applied load, thickness of homogeneous layer, shear modulus of homogeneous layer and shear modulus of homogeneous half-plane. One of the most important conclusions from this study is that the contact stresses and contact areas can be controlled with the addition of the homogeneous layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Popov, V.L.: Contact Mechanics and Friction. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  2. Dundurs, J.: Properties of elastic bodies in contact. In: de Pater, A.D., Kalker, J.J. (eds.) The Mechanics of the Contact Between Deformable Bodies, pp. 54–66 (1975)

  3. Öner, E., Yaylacı, M., Birinci, A.: Solution of a receding contact problem using an analytical method and a finite element method. J. Mech. Mater. Struct. 9(3), 333–345 (2014)

    Article  Google Scholar 

  4. Adıyaman, G., Yaylacı, M., Birinci, A.: Analytical and finite element solution of a receding contact problem. Struct. Eng. Mech. 54(1), 69–85 (2015)

    Article  Google Scholar 

  5. Garrido, J.A., Lorenzana, A.: Receding contact problem involving large displacements using the BEM. Eng. Anal. Bound. Elem. 21(4), 295–303 (1998)

    Article  MATH  Google Scholar 

  6. Garrido, J.A., Foces, A., Paris, F.: Bem applied to receding contact problems with friction. Math. Comput. Modell. 15(3–5), 143–153 (1991)

    Article  MATH  Google Scholar 

  7. Keer, L.M., Dundurs, J., Tsai, K.C.: Problems involving a receding contact between a layer and a half space. J. Appl. Mech. 39, 1115–1120 (1972)

    Article  Google Scholar 

  8. Gladwell, G.M.L.: On some unbonded contact problems in plane elasticity theory. J. Appl. Mech. 43, 263–267 (1976)

    Article  MATH  Google Scholar 

  9. Ratwani, M., Erdogan, F.: On the plane contact problem for a frictionless elastic layer. Int. J. Solids Struct. 9(8), 921–936 (1973)

    Article  MATH  Google Scholar 

  10. Civelek, M.B., Erdogan, F.: The axisymmetric double contact problem for a frictionless elastic layer. Int. J. Solids Struct. 10(6), 639–659 (1974)

    Article  MATH  Google Scholar 

  11. Gecit, M.R.: Axisymmetric contact problem for a semiinfinite cylinder and a half space. Int. J. Eng. Sci. 24(8), 1245–1256 (1986)

    Article  MATH  Google Scholar 

  12. Çömez, I., Birinci, A., Erdol, R.: Double receding contact problem for a rigid stamp and two elastic layers. Eur. J. Mech. A Solids 23(2), 301–309 (2004)

    Article  MATH  Google Scholar 

  13. Çömez, I.: Frictional contact problem for a rigid cylindrical stamp and an elastic layer resting on a half plane. Int. J. Solids Struct. 47(7–8), 1090–1097 (2010)

    Article  MATH  Google Scholar 

  14. Parel, K.S., Hills, D.A.: Frictional receding contact analysis of a layer on a half-plane subjected to semi-infinite surface pressure. Int. J. Mech. Sci. 108, 137–143 (2016)

    Article  Google Scholar 

  15. Erdogan, F.: Fracture mechanics of functionally graded materials. Compos. Eng. 5(7), 753–770 (1995)

    Article  Google Scholar 

  16. Guler, M.A., Erdogan, F.: Contact mechanics of graded coatings. Int. J. Solids Struct. 41(14), 3865–3889 (2004)

    Article  MATH  Google Scholar 

  17. Ke, L.-L., Wang, Y.-S.: Two-dimensional sliding frictional contact of functionally graded materials. Eur. J. Mech. A Solids 26(1), 171–188 (2007)

    Article  MATH  Google Scholar 

  18. Choi, H.J., Paulino, G.H.: Thermoelastic contact mechanics for a flat punch sliding over a graded coating/substrate system with frictional heat generation. J. Mech. Phys. Solids 56(4), 1673–1692 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guler, M.A., Adibnazari, S., Alinia, Y.: Tractive rolling contact mechanics of graded coatings. Int. J. Solids Struct. 49(6), 929–945 (2012)

    Article  Google Scholar 

  20. Peijian, C., Shaohua, C., Juan, P.: Sliding contact between a cylindrical punch and a graded half-plane with an arbitrary gradient direction. J. Appl. Mech. 82(4), 041008 (2015)

    Article  Google Scholar 

  21. Alinia, Y., Beheshti, A., Guler, M.A., El-Borgi, S., Polycarpou, A.A.: Sliding contact analysis of functionally graded coating/substrate system. Mech. Mater. 94, 142–155 (2016)

    Article  Google Scholar 

  22. Patra, R., Barik, S.P., Chaudhuri, P.K.: Frictionless contact between a rigid indentor and a transversely isotropic functionally graded layer. Int. J. Appl. Mech. Eng. 23(3), 655–671 (2018)

    Article  Google Scholar 

  23. El-Borgi, S., Abdelmoula, R., Keer, L.: A receding contact plane problem between a functionally graded layer and a homogeneous substrate. Int. J. Solids Struct. 43(3–4), 658–674 (2006)

    Article  MATH  Google Scholar 

  24. Rhimi, M., El-Borgi, S., Ben Said, W., Ben Jemaa, F.: A receding contact axisymmetric problem between a functionally graded layer and a homogeneous substrate. Int. J. Solids Struct. 46(20), 3633–3642 (2009)

    Article  MATH  Google Scholar 

  25. Rhimi, M., El-Borgi, S., Lajnef, N.: A double receding contact axisymmetric problem between a functionally graded layer and a homogeneous substrate. Mech. Mater. 43(12), 787–798 (2011)

    Article  Google Scholar 

  26. El-Borgi, S., Usman, S., Güler, M.A.: A frictional receding contact plane problem between a functionally graded layer and a homogeneous substrate. Int. J. Solids Struct. 51(25–26), 4462–4476 (2014)

    Article  Google Scholar 

  27. Yan, J., Li, X.: Double receding contact plane problem between a functionally graded layer and an elastic layer. Eur. J. Mech. A Solids 53, 143–150 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Çömez, I., El-Borgi, S., Kahya, V., Erdöl, R.: Receding contact problem for two-layer functionally graded media indented by a rigid punch. Acta Mech. 227(9), 2493–2504 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yan, J., Mi, C.: On the receding contact between an inhomogeneously coated elastic layer and a homogeneous half-plane. Mech. Mater. 112, 18–27 (2017)

    Article  Google Scholar 

  30. El-Borgi, S., Çömez, I.: A receding frictional contact problem between a graded layer and a homogeneous substrate pressed by a rigid punch. Mech. Mater. 114, 201–214 (2017)

    Article  Google Scholar 

  31. Yilmaz, K.B., Çömez, I., Yildirim, B., Güler, M.A., El-Borgi, S.: Frictional receding contact problem for a graded bilayer system indented by a rigid punch. Int. J. Mech. Sci. 141, 127–142 (2018)

    Article  Google Scholar 

  32. Le, K.C., Yi, J.-H.: An asymptotically exact theory of smart sandwich shells. Int. J. Eng. Sci. 106, 179–198 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Le, K.C.: An asymptotically exact theory of functionally graded piezoelectric shells. Int. J. Eng. Sci. 112, 42–62 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Erdogan, F., Gupta, G.D., Cook, T.S.: Numerical solution of singular integral equations. In: Sih, G.C. (ed.) Methods of Analysis and Solutions of Crack Problems, pp. 368–425. Springer, Berlin (1973)

Download references

Acknowledgements

The second author is grateful for the funding provided by Texas A&M University at Qatar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isa Çömez.

Ethics declarations

Conflict of interest statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 Expressions of quantities appearing in integral equations (28a) and (28b)

$$\begin{aligned} k_{11} (x_1 ,t_1 )&= \int \limits _0^\infty {\frac{{I\;M_{11} (\alpha ) - \varphi _1 }}{{\varphi _1 }}} \sin \alpha (t_1 - x_1 )\mathrm{d}\alpha + \eta _1 \int \limits _0^\infty {\frac{{\;N_{11} (\alpha ) - \varphi _2 }}{{\varphi _1 }}} \cos \alpha (t_1 - x_1 )\mathrm{d}\alpha \end{aligned}$$
(A.1)
$$\begin{aligned} k_{12} (x_1 ,t_2 )&= \int \limits _0^\infty {\frac{{IM_{12} (\alpha )}}{{\beta _1 }}} \sin \alpha (t_2 - x_1 )\mathrm{d}\alpha + \eta _1 \int \limits _0^\infty {\frac{{N_{12} (\alpha )}}{{\beta _1 }}} \cos \alpha (t_2 - x_1 )\mathrm{d}\alpha \end{aligned}$$
(A.2)

where

$$\begin{aligned} M_{11} (\alpha )= & {} \sum \limits _{j = 1}^4 {\alpha m_{1j} e^{n_{1j} h_1 } A_{1j}^{p1} }, \quad N_{11} (\alpha ) = \sum \limits _{j = 1}^4 {\alpha m_{1j} e^{n_{1j} h_1 } A_{1j}^{q1} } \end{aligned}$$
(A.3)
$$\begin{aligned} M_{12} (\alpha )= & {} \sum \limits _{j = 1}^4 {\alpha m_{1j} e^{n_{1j} h_1 } A_{1j}^{p2} }, \quad N_{12} (\alpha ) = \sum \limits _{j = 1}^4 {\alpha m_{1j} e^{n_{1j} h_1 } A_{1j}^{q2} }. \end{aligned}$$
(A.4)

In Eq. (A.1), the singular terms \(\varphi _1\) and \(\varphi _2\) are given by

$$\begin{aligned} \varphi _1= & {} \mathop {\lim }\limits _{\alpha \rightarrow \infty } \;I\,M_{11} (\alpha ), \quad \varphi _2 = \mathop {\lim }\limits _{\alpha \rightarrow \infty } \;N_{11} (\alpha ) \end{aligned}$$
(A.5)
$$\begin{aligned} k_{21} (x_2 ,t_1 )= & {} \int \limits _0^\infty {\frac{{IM_{21} (\alpha )}}{{\beta _3 }}} \sin \alpha (t_1 - x_2 )\mathrm{d}\alpha + \eta _2 \int \limits _0^\infty {\frac{{N_{21} (\alpha )}}{{\beta _3 }}} \cos \alpha (t_1 - x_2 )\mathrm{d}\alpha \end{aligned}$$
(A.6)
$$\begin{aligned} k_{22} (x_2 ,t_2 )= & {} \int \limits _0^\infty {\frac{{I\;M_{22} (\alpha ) - \varphi _3 }}{{\varphi _3 }}} \sin \alpha (t_2 - x_2 )\mathrm{d}\alpha + \eta _2 \int \limits _0^\infty {\frac{{\;N_{22} (\alpha ) - \varphi _4 }}{{\varphi _3 }}} \cos \alpha (t_2 - x_2 )\mathrm{d}\alpha \end{aligned}$$
(A.7)

where

$$\begin{aligned} M_{21} (\alpha )= & {} \sum \limits _{j = 1}^4 { - \alpha \left( {m_{1j} A_{1j}^{p1} - m_{2j} A_{2j}^{p1} } \right) }, \quad N_{21} (\alpha ) = \sum \limits _{j = 1}^4 { - \alpha \left( {m_{1j} A_{1j}^{q1} - m_{2j} A_{2j}^{q1} } \right) } \end{aligned}$$
(A.8)
$$\begin{aligned} M_{22} (\alpha )= & {} \sum \limits _{j = 1}^4 { - \alpha \left( {m_{1j} A_{1j}^{p2} - m_{2j} A_{2j}^{p2} } \right) }, \quad N_{22} (\alpha ) = \sum \limits _{j = 1}^4 { - \alpha \left( {m_{1j} A_{1j}^{q2} - m_{2j} A_{2j}^{q2} } \right) }. \end{aligned}$$
(A.9)

In Eq. (A.7), the expressions of the singular terms \(\varphi _3\) and \(\varphi _4\) can be written as

$$\begin{aligned} \varphi _3 = \mathop {\lim }\limits _{\alpha \rightarrow \infty } \;I\;M_{22} (\alpha ), \quad \varphi _4 = \mathop {\lim }\limits _{\alpha \rightarrow \infty } \;N_{22} (\alpha ) \end{aligned}$$
(A.10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çömez, I., El-Borgi, S. & Yildirim, B. Frictional receding contact problem of a functionally graded layer resting on a homogeneous coated half-plane. Arch Appl Mech 90, 2113–2131 (2020). https://doi.org/10.1007/s00419-020-01712-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01712-4

Keywords

Navigation