Skip to main content
Log in

Antiplane shear crack in a functionally graded material strip with surface elasticity

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

When the dimension of a structure falls to the micro-/nanoscale, surface effect is significant and plays a key role in affecting the mechanical behavior. This article studies the influence of surface elasticity on the stress intensity factor of an antiplane shear crack embedded in an elastic strip made of functionally graded materials. Surface elasticity is applied on the strip surfaces and crack faces, and classic elasticity is invoked for the strip interior. An antiplane shear crack problem is solved for a symmetric FGM with a crack parallel to the strip surfaces. The associated problem is converted to a hypersingular integro-differential equation for the out-of-plane displacement on the crack faces through the Fourier transform and then to a singular integro-differential equation with Cauchy kernel. The Galerkin method is applied to expand the crack face displacement as a Chebyshev series, and the singular integro-differential equation reduces to a system of algebraic linear equations. Stress intensity factors at the crack tips and the out-of-plane displacement on the crack faces are calculated numerically. It is found that surface elasticity and gradient index strongly alter the bulk stress and its intensity factors near the crack tips. Positive surface shear modulus decreases the mode III stress intensity factors and negative surface shear modulus has an opposite behavior. The influence of the variation of material gradient on the mode III stress intensity factors is expounded in graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Vaseashta, A., DimovaMalinovska, D.: Nanostructured and nanoscale devices, sensors and detectors. Sci. Technol. Adv. Mater. 6(3), 312–318 (2005)

    Article  Google Scholar 

  2. Fang, T.H., Li, W.L., Tao, N.R., Lu, K.: Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331(6024), 1587–1590 (2011)

    Article  Google Scholar 

  3. Lee, Z., Ophus, C., Fischer, L.M., et al.: Metallic NEMS components fabricated from nanocomposite Al–Mo films. Nanotechnology 17, 3063–3070 (2006)

    Article  Google Scholar 

  4. Xu, B., Saygin, V., Brown, K.A., Andersson, S.B.: High-resolution measurement of atomic force microscope cantilever resonance frequency. Rev. Sci. Instrum. 91(12), 123705 (2020)

    Article  Google Scholar 

  5. Kim, H.-S., Yang, Y., Koh, J.-T., Lee, K.-K., Lee, D.-J., Lee, K.-M., Park, S.-W.: Fabrication and characterization of functionally graded nano-micro porous titanium surface by anodizing. J. Biomed. Mater. Res. B Appl. Biomater. 88B(2), 427–435 (2009)

    Article  Google Scholar 

  6. Lajevardi, S., Shahrabi, T., Szpunar, J.: Synthesis of functionally graded nano al2o3-ni composite coating by pulse electrodeposition. Appl. Surf. Sci. 279, 180–188 (2013)

    Article  Google Scholar 

  7. Cuenot, S., Frétigny, C., Demoustier-Champagne, S., Nysten, B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69(16), 165410 (2004)

    Article  Google Scholar 

  8. Liu, Z., Meyers, M.A., Zhang, Z., Ritchie, R.O.: Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Prog. Mater Sci. 88, 467–498 (2017)

    Article  Google Scholar 

  9. Cheng, Z., Zhou, H., Lu, Q., Gao, H., Lu, L.: Extra strengthening and work hardening in gradient nanotwinned metals. Science 362, 1925 (2018)

    Article  Google Scholar 

  10. Chu, Y.H., Zhao, T., Cruz, M.P., Zhan, Q., Yang, P.L., Martin, L.W., Huijben, M., Yang, C.H., Zavaliche, F., Zheng, H., Ramesh, R.: Ferroelectric size effects in multiferroic BiFeO\(\_3\) thin films. Appl. Phys. Lett. 90(25), 252906 (2007)

    Article  Google Scholar 

  11. Bauer, S., Pittrof, A., Tsuchiya, H., Schmuki, P.: Size-effects in TiO\(_{2}\) nanotubes: diameter dependent anataserutile stabilization. Electrochem. Commun. 13(6), 538–541 (2011)

    Article  Google Scholar 

  12. Zang, J., Liu, F.: Theory of bending of Si nanocantilevers induced by molecular adsorption: a modified stoney formula for the calibration of nanomechanochemical sensors. Nanotechnology 18(40), 405501 (2007)

    Article  Google Scholar 

  13. Dingreville, R., MinQu, J., Cherkaoui, M.: Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53(8), 1827–1854 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46(1), 1–38 (1994)

    Article  Google Scholar 

  15. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gurtin, M.E., Weissmuller, J., Larche, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78(5), 1093–1109 (1998)

    Article  Google Scholar 

  17. Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. London Ser. A 453(1959), 853–877 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Steigmann, D.J., Ogden, R.W.: Elastic surface-substrate interactions. Proc. R. Soc. London Ser. A 455(1999), 437–474 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chhapadia, P., Mohammadi, P., Sharma, P.: Curvature-dependent surface energy and implications for nanostructures. J. Mech. Phys. Solids 59(10), 2103–2115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lu, P., He, L.H., Lee, H.P., Lu, C.: Thin plate theory including surface effects. Int. J. Solids Struct. 43(16), 4631–4647 (2006)

    Article  MATH  Google Scholar 

  21. Li, X.-F., Zou, J., Jiang, S.-N., Lee, K.Y.: Resonant frequency and flutter instability of a nanocantilever with the surface effects. Compos. Struct. 153, 645–653 (2016)

    Article  Google Scholar 

  22. Ansari, R., Shojaei, M.F., Gholami, R.: Size-dependent nonlinear mechanical behavior of third-order shear deformable functionally graded microbeams using the variational differential quadrature method. Compos. Struct. 136, 669–683 (2016)

    Article  Google Scholar 

  23. Ou, Z.Y., Wang, G.F., Wang, T.J.: Effect of residual surface tension on the stress concentration around a nanosized spheroidal cavity. Int. J. Eng. Sci. 46(5), 475–485 (2008)

    Article  Google Scholar 

  24. Dai, M., Schiavone, P., Gao, C.-F.: Screw dislocation in a thin film with surface effects. Int. J. Solids Struct. 110–111, 89–93 (2017)

    Google Scholar 

  25. Hu, Z.-L., Li, X.-F.: A rigid line inclusion in an elastic film with surface elasticity. Z. Angew. Math. Phys. 69(4), 92 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Carpinteri, A., Spagnoli, A.: A fractal analysis of size effect on fatigue crack growth. Int. J. Fatigue 26(2), 125–133 (2004)

    Article  MATH  Google Scholar 

  27. Fu, X.L., Wang, G.F., Feng, X.Q.: Surface effects on the near-tip stress fields of a mode-II crack. Int. J. Fract. 151(2), 95–106 (2008)

    Article  MATH  Google Scholar 

  28. Fu, X.L., Wang, G.F., Feng, X.Q.: Surface effects on mode-I crack tip fields: a numerical study. Eng. Fract. Mech. 77(7), 1048–1057 (2010)

    Article  Google Scholar 

  29. Fu, X.L., Wang, G.F., Feng, X.Q.: Effects of surface elasticity on mixed-mode fracture. Int. J. Appl. Mech. 3(3), 435–446 (2011)

    Article  Google Scholar 

  30. Kim, W., Cho, M.: Surface effect on the self-equilibrium state and size-dependent elasticity of FCC thin films. Modell. Simul. Mater. Sci. Eng. 18(8), 085006 (2010)

    Article  Google Scholar 

  31. Kim, C.I., Schiavone, P., Ru, C.Q.: The effects of surface elasticity on an elastic solid with mode-III crack: Complete solution. J. Appl. Mech. 77, (2010)

  32. Kim, C.I., Schiavone, P., Ru, C.-Q.: Analysis of plane-strain crack problems mode-I/mode-II in the presence of surface elasticity. J. Elast. 104(1), 397–420 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, X., Schiavone, P.: Bridged cracks of mode III with surface elasticity. Mech. Mater. 95, 125–135 (2016)

    Article  Google Scholar 

  34. Wang, X., Zhou, K., Wu, M.S.: Interface cracks with surface elasticity in anisotropic bimaterials. Int. J. Solids Struct. 59, 110–120 (2015)

    Article  Google Scholar 

  35. Li, X.-F.: Effect of surface elasticity on stress intensity factors near mode-III crack tips. J. Mech. Mater. Struct. 14(1), 43–60 (2019)

    Article  MathSciNet  Google Scholar 

  36. Yang, Y., Hu, Z.-L., Li, X.-F.: Nanoscale mode-III interface crack in a bimaterial with surface elasticity. Mech. Mater. 140, 103246 (2020)

    Article  Google Scholar 

  37. Intarit, P., Senjuntichai, T., Rungamornrat, J., Rajapakse, R.K.N.D.: Penny-shaped crack in elastic medium with surface energy effects. Acta Mech. 228(2), 617–630 (2017)

    Article  MathSciNet  Google Scholar 

  38. Zemlyanova, A.: Curvilinear mode-I/mode-II interface fracture with a curvature-dependent surface tension on the boundary. IMA J. Appl. Math. 81(6), 1112–1136 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zemlyanova, A.: A straight mixed mode fracture with the Steigmann–Ogden boundary condition. Q. J. Mech. Appl. Math. 70(1), 65–86 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gorbushin, N., Eremeyev, V.A., Mishuris, G.: On stress singularity near the tip of a crack with surface stresses. Int. J. Eng. Sci. 146, 103183 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Antipov, Y.A., Schiavone, P.: Integro-differential equation for a finite crack in a strip with surface effects. Q. J. Mech. Appl. Math. 64(1), 87–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hu, Z.-L., Lee, K.Y., Li, X.-F.: Crack in an elastic thin-film with surface effect. Int. J. Eng. Sci. 123, 158–173 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shodja, H.M., Ghafarollahi, A., Enzevaee, C.: Surface/interface effect on the scattering of love waves by a nano-size surface-breaking crack within an ultra-thin layer bonded to an elastic half-space. Int. J. Solids Struct. 108, 63–73 (2017)

    Article  Google Scholar 

  44. Ghafarollahi, A., Shodja, H.M.: Scattering of SH-waves by a nano-fiber beneath the interface of two bonded half-spaces within surface/interface elasticity via multipole expansion. Int. J. Solids Struct. 130–131, 258–279 (2018)

    Article  Google Scholar 

  45. Yang, Y., Hu, Z.-L., Li, X.-F.: Cracked elastic layer with surface elasticity under antiplane shear loading. Acta Mecha 231, 3085–3098 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  46. Chan, Y.-S., Paulino, G.H., Fannjiang, A.C.: The crack problem for nonhomogeneous materials under antiplane shear loading - a displacement based formulation. Int. J. Solids Struct. 38(17), 2989–3005 (2001)

    Article  MATH  Google Scholar 

  47. Chan, Y.S., Fannjiang, A.C., Paulino, G.H.: Integral equations with hypersingular kernels-theory and applications to fracture mechanics. Int. J. Eng. Sci. 41(7), 683–720 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Feng, W., Wang, H., Xue, Y., Li, H.: Antiplane shear impact of multiple coplanar Griffith cracks in an isotropic functionally graded strip. Compos. Struct. 73(3), 354–359 (2006)

    Article  Google Scholar 

  49. Sharma, P., Ganti, S.: Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J. Appl. Mech. 71(4), 663–671 (2004)

    Article  MATH  Google Scholar 

  50. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards, Gaithersburg (1964)

    MATH  Google Scholar 

  51. Li, X.-F., Tang, G.: Antiplane interface crack between two bonded dissimilar piezoelectric layers. Eur. J. Mech. A. Solids 22, 231–242 (2003)

    Article  MATH  Google Scholar 

  52. Chen, Y. F., Erdogan, F.: The interface crack problem for a nonhomogeneous coating bonded to a homogeneous substrate, J. Mech. Phys. Solids 44 (5): 771 – 787, (1996) mechanics and Physics of Layered and Graded Materials

  53. Jin, Z.-H., Batra, R.: Interface cracking between functionally graded coatings and a substrate under antiplane shear. Int. J. Eng. Sci. 34(15), 1705–1716 (1996)

    Article  MATH  Google Scholar 

  54. Shodja, H.M., Enzevaee, C.: Surface characterization of face-centered cubic crystals. Mech. Mater. 129, 15–22 (2019)

    Article  Google Scholar 

  55. Li, C.: Antiplane crack problem in functionally graded piezoelectric materials. J. Appl. Mech. 69, 481–488 (2002)

    Article  MATH  Google Scholar 

  56. Zhou, Z.-G., Wu, L., Wang, B.: The behavior of a crack in functionally graded piezoelectric/piezomagnetic materials under anti-plane shear loading. Arch. Appl. Mech. 74, 526–535 (2005)

    Article  MATH  Google Scholar 

  57. Berggreen, C., Simonsen, B.C., Borum, K.K.: Experimental and numerical study of interface crack propagation in foam-cored sandwich beams. J. Compos. Mater. 41(4), 493–520 (2007)

    Article  Google Scholar 

  58. Sharaf, T., Shawkat, W., Fam, A.: Structural performance of sandwich wall panels with different foam core densities in one-way bending. J. Compos. Mater. 44(19), 2249–2263 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12072374 and 11672336).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Fang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Ma, WL., Hu, ZL. et al. Antiplane shear crack in a functionally graded material strip with surface elasticity. Arch Appl Mech 91, 3035–3052 (2021). https://doi.org/10.1007/s00419-021-01948-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01948-8

Keywords

Navigation