Skip to main content
Log in

Micromechanical modeling of the biaxial behavior of strain-induced crystallizable polyethylene terephthalate-clay nanocomposites

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The present work addresses the question of the quantitative prediction of the biaxial response of polymer–clay nanocomposites experiencing strain-induced crystallization. Polyethylene terephthalate is taken as material model to represent the continuous amorphous phase of nanocomposites. A continuum-based micromechanical model is developed to predict the combined effect of strain-induced phase transformation and nanocomposite structural characteristics on the overall elastic-viscoplastic response. Comparisons with available experimental data are presented to illustrate the capabilities of the model in relation to various loading parameters in terms of loading path, loading rate and loading temperature. The model is used to provide a better understanding of the relationship between nanocomposite structural characteristics, phase transformation, intrinsic properties and loading parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The double dot “:” signifies the tensor contraction between a fourth-order tensor and a second-order tensor, while the single dot “.” denotes the tensor multiplication between two fourth-order tensors.

References

  1. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., Kamigaito, O.: Mechanical properties of nylon 6-clay hybrid. J. Mater. Res. 8, 1185–1189 (1993)

    Article  Google Scholar 

  2. Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., Kamigaito, O.: Synthesis of nylon 6-clay hybrid. J. Mater. Res. 8, 1179–1184 (1993)

    Article  Google Scholar 

  3. Pavlidou, S., Papaspyrides, C.D.: A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci. 33, 1119–1198 (2008)

    Article  Google Scholar 

  4. Ke, Y., Long, C., Qi, Z.: Crystallization, properties, and crystal and nanoscale morphology of PET-clay nanocomposites. J. Appl. Polym. Sci. 71, 1139–1146 (1999)

    Article  Google Scholar 

  5. Rajeev, R.S., Harkin-Jones, E., Soon, K., McNally, T., Menary, G., Armstrong, C.G., Martin, P.J.: Studies on the effect of equi-biaxial stretching on the exfoliation of nanoclays in polyethylene terephthalate. Eur. Polym. J. 45, 332–340 (2009)

    Article  Google Scholar 

  6. Alongi, J., Frache, A., Gioffredi, E.: Fire-retardant poly(ethylene terephthalate) by combination of expandable graphite and layered clays for plastics and textiles. Fire Mater. 35, 383–396 (2011)

    Article  Google Scholar 

  7. Shen, Y., Harkin-Jones, E., Hornsby, P., McNally, T., Abu-Zurayk, R.: The effect of temperature and strain rate on the deformation behaviour, structure development and properties of biaxially stretched PET-clay nanocomposites. Compos. Sci. Technol. 71, 758–764 (2011)

    Article  Google Scholar 

  8. Wang, Y., Jabarin, S.A.: Novel preparation method for enhancing nanoparticle dispersion and barrier properties of poly(ethylene terephthalate) and poly(m-xylylene adipamide). J. Appl. Polym. Sci. 129, 1455–1465 (2013)

    Article  Google Scholar 

  9. Wu, J.H., Yen, M.S., Kuo, M.C., Wu, C.P., Leu, M.T., Li, C.H., Tsai, F.K.: Poly(ethylene terephthalate)/poly(ethylene glycol-co-1,3/1,4-cyclohexanedimethanol terephthalate)/clay nanocomposites: morphology and isothermal crystallization kinetics. J. Appl. Polym. Sci. 128, 487–497 (2013)

    Article  Google Scholar 

  10. Dini, M., Mousavand, T., Carreau, J.P., Kamal, R.M., Ton-That, M.T.: Microstructure and properties of poly(ethylene terephthalate)/organoclay nanocomposites prepared by water-assisted extrusion: effect of organoclay concentration. Polym. Eng. Sci. 54, 1879–1892 (2014)

    Article  Google Scholar 

  11. Korivi, N.S.: Preparation, characterization, and applications of poly(ethylene terephthalate) nanocomposites. In: Manufacturing of Nanocomposites with Engineering Plastics, pp. 167–198 (2015).

  12. Saxena, D., Rana, D., Bhoje Gowd, E., Maiti, P.: Improvement in mechanical and structural properties of poly(ethylene terephthalate) nanohybrid. SN Appl. Sci. 1, 1363 (2019)

    Article  Google Scholar 

  13. Hbaieb, K., Wang, Q.X., Chia, Y.H.J., Cotterell, B.: Modelling stiffness of polymer/clay nanocomposites. Polymer 48, 901–909 (2007)

    Article  Google Scholar 

  14. Figiel, L., Buckley, C.P.: Elastic constants for an intercalated layered-silicate/polymer nanocomposite using the effective particle concept - A parametric study using numerical and analytical continuum approaches. Comput. Mater. Sci. 44, 1332–1343 (2009)

    Article  Google Scholar 

  15. Pahlavanpour, M., Moussaddy, H., Ghossein, E., Hubert, P., Lévesque, M.: Prediction of elastic properties in polymer-clay nanocomposites: analytical homogenization methods and 3D finite element modeling. Comput. Mater. Sci. 79, 206–215 (2013)

    Article  Google Scholar 

  16. Pisano, C., Figiel, L.: Modelling of morphology evolution and macroscopic behaviour of intercalated PET-clay nanocomposites during semi-solid state processing. Compos. Sci. Technol. 75, 35–41 (2013)

    Article  Google Scholar 

  17. Figiel, L.: Effect of the interphase on large deformation behaviour of polymer-clay nanocomposites near the glass transition: 2D RVE computational modelling. Comput. Mater. Sci. 84, 244–254 (2014)

    Article  Google Scholar 

  18. Figiel, L.: Nonlinear multiscale modelling of quasi-solid state behaviour of PET/MWCNT nanocomposites: 3D RVE-based approach. Composites Communications 8, 101–105 (2018)

    Article  Google Scholar 

  19. Vo, V.S., Nguyen, V.H., Chergui, M.S., Benjamin, C., Salah, N.: Estimation of effective elastic properties of polymer/clay nanocomposites: a parametric study. Compos. B Eng. 152, 139–150 (2018)

    Article  Google Scholar 

  20. Brune, D.A., Bicerano, J.: Micromechanics of nanocomposites: comparison of tensile and compressive elastic moduli, and prediction of the effects of incomplete exfoliation and imperfect alignment on modulus. Polymer 43, 369–387 (2002)

    Article  Google Scholar 

  21. Ji, X.L., Jing, J.K., Jiang, W., Jiang, B.Z.: Tensile modulus of polymer nanocomposites. Polym. Eng. Sci. 42, 983–993 (2002)

    Article  Google Scholar 

  22. Fornes, T.D., Paul, D.R.: Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44, 4993–5013 (2003)

    Article  Google Scholar 

  23. Luo, J.J., Daniel, I.M.: Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos. Sci. Technol. 63, 1607–1616 (2003)

    Article  Google Scholar 

  24. Sheng, N., Boyce, M.C., Parks, D.M., Rutledge, G.C., Abes, J.I., Cohen, R.C.: Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer 45, 487–506 (2004)

    Article  Google Scholar 

  25. Wang, J., Pyrz, R.: Prediction of the overall moduli of layered silicate-reinforced nanocomposites-part I: basic theory and formulas. Compos. Sci. Technol. 64, 925–934 (2004)

    Article  Google Scholar 

  26. Anthoulis, G.I., Kontou, E.: Micromechanical behaviour of particulate polymer nanocomposites. Polymer 49, 1934–1942 (2008)

    Article  Google Scholar 

  27. Mesbah, A., Zaïri, F., Boutaleb, S., Gloaguen, J.M., Naït-Abdelaziz, M., Xie, S., Boukharouba, T., Lefebvre, J.M.: Experimental characterization and modeling stiffness of polymer/clay nanocomposites within a hierarchical multiscale framework. J. Appl. Polym. Sci. 114, 3274–3291 (2009)

    Article  MATH  Google Scholar 

  28. Anoukou, K., Zaïri, F., Naït-Abdelaziz, M., Zaoui, A., Messager, T., Gloaguen, J.M.: On the overall elastic moduli of polymer–clay nanocomposite materials using a self-consistent approach. Part I : Theory. Compos. Sci. Technol. 71, 197–205 (2011)

    Article  Google Scholar 

  29. Anoukou, K., Zaïri, F., Naït-Abdelaziz, M., Zaoui, A., Messager, T., Gloaguen, J.M.: On the overall elastic moduli of polymer–clay nanocomposite materials using a self-consistent approach. Part II: Experimental verification. Compos. Sci. Technol. 71, 206–215 (2011)

    Article  Google Scholar 

  30. Zaïri, F., Gloaguen, J.M., Naït-Abdelaziz, M., Mesbah, A., Lefebvre, J.M.: Study of the effect of size and clay structural parameters on the yield and post-yield response of polymer/clay nanocomposites via a multiscale micromechanical modeling. Acta Mater. 59, 3851–3863 (2011)

    Article  Google Scholar 

  31. Zare-Shahabadi, A., Shokuhfar, A., Ebrahimi-Nejad, S., Arjmand, M., Termeh, M.: Modeling the stiffness of polymer/layered silicate nanocomposites: more accurate predictions with consideration of exfoliation ratio as a function of filler content. Polym. Testing 30, 408–414 (2011)

    Article  Google Scholar 

  32. Wang, K., Ahzi, S., Matadi Boumbimba, R., Bahlouli, N., Addiego, F., Remond, Y.: Micromechanical modeling of the elastic behavior of polypropylene based organoclay nanocomposites under a wide range of temperatures and strain rates/frequencies. Mech. Mater. 64, 56–68 (2013)

    Article  Google Scholar 

  33. Anoukou, K., Zaïri, F., Naït-Abdelaziz, M., Zaoui, A., Qu, Z., Gloaguen, J.M., Lefebvre, J.M.: A micromechanical model taking into account the contribution of α- and γ-crystalline phases in the stiffening of polyamide 6-clay nanocomposites: a closed-formulation including the crystal symmetry. Compos. B Eng. 64, 84–96 (2014)

    Article  Google Scholar 

  34. Buckley, C.P., Jones, D.C., Jones, D.P.: Hot-drawing of poly(ethylene terephthalate) under biaxial stress: application of a three-dimensional glass-rubber constitutive model. Polymer 37(2403), 2414 (1996)

    Google Scholar 

  35. Adams, A.M., Buckley, C.P., Jones, D.P.: Biaxial hot drawing of poly(ethylene terephthalate): measurements and modelling of strain-stiffening. Polymer 41, 771–786 (2000)

    Article  Google Scholar 

  36. Ju, J.W., Sun, L.Z.: Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities. Part I: micromechanics-based formulation. Int. J. Solids Struct. 38, 183–201 (2001)

    Article  MATH  Google Scholar 

  37. Dupaix, R.B., Boyce, M.C.: Constitutive modeling of the finite strain behavior of amorphous polymers in and above the glass transition. Mech. Mater. 39, 39–52 (2007)

    Article  Google Scholar 

  38. Doufas, A.K., McHugh, A.J., Miller, C.: Simulation of melt spinning including flow-induced crystallization: Part I. Model development and predictions. J. Nonnewton. Fluid Mech. 92, 27–66 (2000)

    Article  MATH  Google Scholar 

  39. Ahzi, S., Makradi, A., Gregory, R.V., Edie, D.D.: Modeling of deformation behavior and strain-induced crystallization in poly(ethylene terephthalate) above the glass transition temperature. Mech. Mater. 35, 1139–1148 (2003)

    Article  Google Scholar 

  40. Anumula, N., Menary, G., Yan, S., Nixon, J., Martin, P.: Processing - property relations from biaxial deformation of PET (polyethylene terephthalate). Am. Inst. Phys. AIP Conf. Proc. 1896, 060012 (2017)

    Article  Google Scholar 

  41. Salem, D.R.: Development of crystalline order during hot-drawing of poly(ethylene terephthalate) film: Influence of strain rate. Polymer 33, 3182–3188 (1992)

    Article  Google Scholar 

  42. Wang, Y.H., Wang, W.H., Zhang, Z., Xu, L., Li, P.: Study of the glass transition temperature and the mechanical properties of PET/modified silica nanocomposite by molecular dynamics simulation. Eur. Polymer J. 75, 36–45 (2016)

    Article  Google Scholar 

  43. Matsuo, M., Sawatari, C.: Morphological and mechanical properties of Poly(ethylene terephthalate) gel and melt films in terms of the crystal lattice modulus, molecular orientation, and small angle X-ray scattering intensity distribution. Polym. J. 22, 518–538 (1990)

    Article  Google Scholar 

  44. Cosson, B., Chevalier, L., Régnier, G.: Simulation of the stretch blow moulding process: from the modelling of the microstructure evolution to the end-use elastic properties of polyethylene terephthalate bottles. Int.J. Mater. Form. 5, 39–53 (2012)

    Article  Google Scholar 

  45. Manevitch, O.L., Rutledge, G.C.: Elastic properties of a single lamella of montmorillonite by molecular dynamics simulation. J. Phys. Chem. B 108, 1428–1435 (2004)

    Article  Google Scholar 

  46. Figiel, L., Soon, K.H., Buckley, C.P.: Modelling and simulation of the large deformation behaviour of nanoclay/PET nanocomposites near the glass transition. Model. Simul. Mater. Sci. Eng. 18, 015001 (2009)

    Article  Google Scholar 

  47. Simo, J.C., Kennedy, J.G., Govindjee, S.: Non-smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms. Int. J. Numer. Methods Eng. 26, 2161–2185 (1988)

    Article  MATH  Google Scholar 

  48. Ju, J.W., Zhang, X.D.: Effective elastoplastic behavior of ductile matrix composites containing randomly located aligned circular fibers. Int. J. Solids Struct. 38, 4045–4069 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahmi Zaïri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The intercalated cluster of clay is replaced by an equivalent homogeneous nanoparticle having transversely isotropic properties. Each intercalated clay stack is seen as a laminated composite sub-structure, consisting of several clay platelets separated by polymer, for which the elastic tensor is estimated using the laminate theory [30]. The elastic stiffness tensor Cclay is given from the six elastic constants written as:

$$\begin{aligned} E_{11} & = E_{33} = \phi {}_{S/P}E_{S} + \left( {1 - \phi_{S/P} } \right)E_{{\text{G}}} \\ E_{22} & = \frac{{E_{{\text{S}}} E_{{\text{G}}} }}{{\phi_{S/P} E_{{\text{G}}} + \left( {1 - \phi_{S/P} } \right)E_{{\text{S}}} - \phi_{S/P} \left( {1 - \phi_{S/P} } \right)\eta_{1} E_{{\text{G}}} E_{{\text{S}}} }} \\ \nu_{12} & = \nu_{23} = \phi_{S/P} \nu_{{\text{S}}} + \left( {1 - \phi_{S/P} } \right)\nu_{{\text{G}}} \\ \nu_{13} & = \frac{{\nu_{{\text{S}}} \phi_{S/P} E_{{\text{S}}} \left( {1 - \nu_{{\text{G}}}^{{2}} } \right) + \nu_{{\text{G}}} \left( {1 - \phi_{S/P} } \right)E_{{\text{G}}} \left( {1 - \nu_{{\text{S}}}^{{2}} } \right)}}{{\phi_{S/P} E_{{\text{S}}} \left( {1 - \nu_{{\text{G}}}^{{2}} } \right) + \nu_{{\text{G}}} \left( {1 - \phi_{S/P} } \right)E_{{\text{G}}} \left( {1 - \nu_{{\text{S}}}^{{2}} } \right)}} \\ G_{12} & = G_{23} = \frac{{G_{{\text{S}}} G_{{\text{G}}} }}{{\phi_{S/P} G_{{\text{G}}} + \left( {1 - \phi_{S/P} } \right)G_{{\text{S}}} - \phi_{S/P} \left( {1 - \phi_{S/P} } \right)\eta_{2} G_{{\text{G}}} G_{{\text{S}}} }} \\ G_{13} & = \frac{{E_{11} }}{{2\left( {1 + \nu_{13} } \right)}} \\ \end{aligned}$$
(A1)

The two parameters \(\eta_{1}\) and \(\eta_{2}\) are given by:

$$\begin{aligned} \eta_{1} & = \frac{{\nu_{{\text{S}}}^{2} {{E_{{\text{G}}} } \mathord{\left/ {\vphantom {{E_{{\text{G}}} } {E_{{\text{S}}} }}} \right. \kern-\nulldelimiterspace} {E_{{\text{S}}} }} + \nu_{{\text{G}}}^{2} {{E_{{\text{S}}} } \mathord{\left/ {\vphantom {{E_{{\text{S}}} } {E_{{\text{G}}} }}} \right. \kern-\nulldelimiterspace} {E_{{\text{G}}} }} - 2\nu_{{\text{S}}} \nu_{{\text{G}}} }}{{\phi_{S/P} E_{{\text{S}}} + \left( {1 - \phi_{S/P} } \right)E_{{\text{G}}} }} \\ \eta_{2} & = \frac{{\nu_{{\text{S}}}^{2} {{G_{{\text{G}}} } \mathord{\left/ {\vphantom {{G_{{\text{G}}} } {G_{{\text{S}}} }}} \right. \kern-\nulldelimiterspace} {G_{{\text{S}}} }} + \nu_{{\text{G}}}^{2} {{G_{{\text{S}}} } \mathord{\left/ {\vphantom {{G_{{\text{S}}} } {G_{{\text{G}}} }}} \right. \kern-\nulldelimiterspace} {G_{{\text{G}}} }} - 2\nu_{{\text{S}}} \nu_{{\text{G}}} }}{{\phi_{S/P} G_{{\text{S}}} + \left( {1 - \phi_{S/P} } \right)G_{{\text{G}}} }} \\ \end{aligned}$$
(A2)

where E is the Young’s modulus, G is the shear modulus and \(\nu\) is the Poisson’s ratio. The subscripts S and G refer to the silicate and the gallery (confined polymer matrix in the intersilicate layers whose elastic constants are taken equal to those of the amorphous PET), respectively. The term \(\phi_{S/P}\) is the volume fraction of silicate in the intercalated clay stack:

$$\phi_{S/P} = \frac{{Nd_{S} }}{t}$$
(A3)

where t is the thickness of the intercalated clay stack:

$$t = \left( {N - 1} \right)d_{001} + d_{S}$$
(A4)

The quantities N, d001 and dS are the clay structural parameters schematically defined in Fig. 

Fig. 10
figure 10

Intercalated clay stack

10. They denote, respectively, the average number of silicate layers per clay stack, the average silicate interlayer spacing and the thickness of the silicate layer, respectively. When the intercalated morphology is invoked in the main body of the paper, the employed average structural parameters are N = 8, LS = 200 nm, dS = 1 nm and d001 = 2 nm.

The volume fraction of intercalated clay stacks can be expressed as:

$$\phi_{{\rm clay}} = \frac{{\rho_{m} }}{{\rho_{S} \phi_{S/P} }}W_{S}$$
(A5)

where WS is the silicate weight fraction, \(\rho_{S}\) is the silicate density and \(\rho_{m}\) is the density of the polymer matrix:

$$\rho_{m} = \phi_{{\rm am}} \rho_{{\rm am}} + \phi_{{\rm cry}} \rho_{{\rm cry}}$$
(A6)

The PET, crystal and clay densities were taken equal to 1.335 g/cm3, 1.445 g/cm3 and 2.3 g/cm3, respectively.

The aspect ratio of the intercalated clay stack \(\alpha_{{\rm clay}}\) is given by:

$$\alpha_{{\rm clay}} = \frac{{\left( {N - 1} \right)d_{001} + d_{S} }}{{L_{S} }}$$
(A7)

where LS is the clay layer length.

The crystal volume fraction \(\phi_{{\rm cry}}\) is calculated from the crystal weight fraction Wcry as follows:

$$\phi_{{\rm cry}} = \frac{{W_{{\rm cry}} }}{{W_{{\rm cry}} + \left( {\frac{{\rho_{{\rm cry}} }}{{\phi_{{\rm am}} \rho_{{\rm am}} + \phi_{{\rm clay}} \rho_{{\rm clay}} }}} \right)\left( {1 - W_{{\rm cry}} } \right)}}$$
(A8)

Appendix B

The parameters \(B_{IK}^{\left( 1 \right)}\) and \(B_{IJ}^{\left( 2 \right)}\) are given by:

$$B_{IK}^{\left( 1 \right)} = - \frac{1}{3} + \frac{2}{{4725\left( {1 - \nu_{{\rm am}} } \right)^{2} }}\left\{ {\begin{array}{*{20}c} {\left[ \begin{gathered} 3\left( {35\nu_{{\rm am}}^{2} - 70\nu_{{\rm am}} + 36} \right)\Delta_{IK} \hfill \\ + 7\left( {50\nu_{{\rm am}}^{2} - 59\nu_{{\rm am}} + 8} \right)\left( {\Delta_{I} + \Delta_{K} } \right) \hfill \\ - 2\left( {175\nu_{{\rm am}}^{2} - 343\nu_{{\rm am}} + 103} \right) \hfill \\ \end{gathered} \right]\left( {\frac{{\phi_{{\rm clay}} }}{{D_{II} D_{KK} }} + \frac{{\phi_{{\rm cry}} }}{{E_{II} E_{KK} }}} \right)} \\ { + 21\left( {25\nu_{{\rm am}} - 2} \right)\left( {1 - 2\nu_{{\rm am}} } \right)\left( \begin{gathered} \phi_{{\rm clay}} \frac{{\left( {G_{II} + G_{KK} } \right)}}{{D_{II} D_{KK} }} \hfill \\ + \phi_{{\rm cry}} \frac{{\left( {H_{II} + H_{KK} } \right)}}{{E_{II} E_{KK} }} \hfill \\ \end{gathered} \right)} \\ { + 21\left( {25\nu_{{\rm am}} - 23} \right)\left( {1 - 2\nu_{{\rm am}} } \right)\left( \begin{gathered} \phi_{{\rm clay}} \frac{{\left( {G_{II} \Delta_{K} + G_{KK} \Delta_{I} } \right)}}{{D_{II} D_{KK} }} \hfill \\ + \phi_{{\rm cry}} \frac{{\left( {H_{II} \Delta_{K} + H_{KK} \Delta_{I} } \right)}}{{E_{II} E_{KK} }} \hfill \\ \end{gathered} \right)} \\ { + 1575\left( {1 - 2\nu_{{\rm am}} } \right)^{2} \left( {\phi_{{\rm clay}} \frac{{G_{II} G_{KK} }}{{D_{II} D_{KK} }} + \phi_{{\rm cry}} \frac{{H_{II} H_{KK} }}{{E_{II} E_{KK} }}} \right)} \\ \end{array} } \right\}$$
(B1)
$$B_{IJ}^{\left( 2 \right)} = \frac{1}{2} + \frac{1}{{1575\left( {1 - \nu_{{\rm am}} } \right)^{2} }}\left( {\frac{{\phi_{{\rm clay}} }}{{D_{IJ} D_{IJ} }} + \frac{{\phi_{{\rm cry}} }}{{E_{IJ} E_{IJ} }}} \right)\left[ \begin{gathered} \left( {70\nu_{{\rm am}}^{2} - 140\nu_{{\rm am}} + 72} \right)\Delta_{IJ} \hfill \\ - \left( {175\nu_{{\rm am}}^{2} - 266\nu_{{\rm am}} + 75} \right)\frac{{\left( {\Delta_{I} + \Delta_{J} } \right)}}{2} \hfill \\ + \left( {350\nu_{{\rm am}}^{2} - 476\nu_{{\rm am}} + 164} \right) \hfill \\ \end{gathered} \right]$$

where \(\Delta_{I}\), \(\Delta_{IJ}\), \(D_{IJ}\), \(E_{IJ}\), \(G_{IJ}\) and \(H_{IJ}\) are defined by:

$$\begin{aligned} \Delta_{1} & = \frac{{3\left[ {1 - \alpha^{4} g\left( {\alpha^{2} } \right)} \right]}}{{1 - \alpha^{4} }}, \\ \Delta_{2} & = \Delta_{3} = \frac{1}{2}\left( {3 - \Delta_{1} } \right), \\ \Delta_{11} & = \frac{{5\left[ {2 + \alpha^{4} - 3\alpha^{4} g\left( {\alpha^{2} } \right)} \right]}}{{2\left( {1 - \alpha^{4} } \right)^{2} }}, \\ \Delta_{12} & = \Delta_{21} = \Delta_{13} = \Delta_{31} = \frac{{15\alpha^{4} \left[ { - 3 + \left( {1 + 2\alpha^{4} } \right)g\left( {\alpha^{2} } \right)} \right]}}{{4\left( {1 - \alpha^{4} } \right)^{2} }}, \\ \Delta_{22} & = \Delta_{23} = \Delta_{32} = \Delta_{33} = \frac{1}{8}\left( {15 - 3\Delta_{11} - 4\Delta_{12} } \right) \\ \end{aligned}$$
(B2)

with

$$g\left( \alpha \right) = \left\{ \begin{gathered} \frac{{\cosh^{ - 1} \alpha }}{{\alpha \sqrt {\alpha^{2} - 1} }}\quad {\text{if}}\;\alpha > 1 \hfill \\ \frac{{\cos^{ - 1} \alpha }}{{\alpha \sqrt {1 - \alpha^{2} } }}\quad {\text{if}}\;\alpha < 1 \hfill \\ \end{gathered} \right.$$
(B3)
$$\begin{aligned} D_{IJ} & = 2\left( {V_{IJ} + NP_{IJ} } \right) \\ E_{IJ} & = 2\left( {V_{IJ} + NI_{IJ} } \right) \\ \end{aligned}$$
(B4)

and

$$\begin{gathered} \left\{ {\left. {\begin{array}{*{20}c} {G_{I1}^{{}} } \\ {G_{I2}^{{}} } \\ {G_{I3}^{{}} } \\ \end{array} } \right\}} \right. = \left[ {\begin{array}{*{20}c} {U_{11} + 2V_{11} + WP_{11}^{{}} } & {U_{21} + MP_{21}^{{}} } & {U_{31} + MP_{31}^{{}} } \\ {U_{12} + MP_{12}^{{}} } & {U_{22} + 2V_{22} + WP_{22}^{{}} } & {U_{32} + MP_{32}^{{}} } \\ {U_{13} + MP_{13}^{{}} } & {U_{23} + MP_{23}^{{}} } & {U_{33} + 2V_{33} + WP_{33}^{{}} } \\ \end{array} } \right]^{ - 1} \left\{ {\left. {\begin{array}{*{20}c} {U_{I1} + MP_{I1}^{{}} } \\ {U_{I2} + MP_{I2}^{{}} } \\ {U_{I3} + MP_{I3}^{{}} } \\ \end{array} } \right\}} \right. \hfill \\ \left\{ {\left. {\begin{array}{*{20}c} {H_{I1}^{{}} } \\ {H_{I2}^{{}} } \\ {H_{I3}^{{}} } \\ \end{array} } \right\}} \right. = \left[ {\begin{array}{*{20}c} {U_{11} + 2V_{11} + WI_{11}^{{}} } & {U_{21} + MI_{21}^{{}} } & {U_{31} + MI_{31}^{{}} } \\ {U_{12} + MI_{12}^{{}} } & {U_{22} + 2V_{22} + WI_{22}^{{}} } & {U_{32} + MI_{32}^{{}} } \\ {U_{13} + MI_{13}^{{}} } & {U_{23} + MI_{23}^{{}} } & {U_{33} + 2V_{33} + WI_{33}^{{}} } \\ \end{array} } \right]^{ - 1} \left\{ {\left. {\begin{array}{*{20}c} {U_{I1} + MI_{I1}^{{}} } \\ {U_{I2} + MI_{I2}^{{}} } \\ {U_{I3} + MI_{I3}^{{}} } \\ \end{array} } \right\}} \right. \hfill \\ \end{gathered}$$
(B5)

with

$$\begin{aligned} U_{11} & = \left( {4\nu_{{\rm am}} + \frac{2}{{\alpha^{2} - 1}}} \right)f\left( \alpha \right) + 4\nu_{{\rm am}} + \frac{4}{{3\left( {\alpha^{2} - 1} \right)}}, \\ U_{12} & = U_{13} = \left( {4\nu_{{\rm am}} - \frac{{2\alpha^{2} + 1}}{{\alpha^{2} - 1}}} \right)f\left( \alpha \right) + 4\nu_{{\rm am}} - \frac{{2\alpha^{2} }}{{\alpha^{2} - 1}}, \\ U_{21} & = U_{31} = \left( { - 2\nu_{{\rm am}} - \frac{{2\alpha^{2} + 1}}{{\alpha^{2} - 1}}} \right)f\left( \alpha \right) - \frac{{2\alpha^{2} }}{{\alpha^{2} - 1}}, \\ U_{22} & = U_{23} = U_{32} = U_{33} = \left( { - 2\nu_{{\rm am}} + \frac{{4\alpha^{2} - 1}}{{4\left( {\alpha^{2} - 1} \right)}}} \right)f\left( \alpha \right) + \frac{{\alpha^{2} }}{{2\left( {\alpha^{2} - 1} \right)}}, \\ \end{aligned}$$
(B6)
$$\begin{aligned} V_{11} & = \left( { - 4\nu_{{\rm am}} + \frac{{4\alpha^{2} - 2}}{{\alpha^{2} - 1}}} \right)f\left( \alpha \right) - 4\nu_{{\rm am}} + \frac{{12\alpha^{2} - 8}}{{3\left( {\alpha^{2} - 1} \right)}}, \\ V_{12} & = V_{21} = V_{13} = V_{31} = \left( { - \nu_{{\rm am}} - \frac{{\alpha^{2} + 2}}{{\alpha^{2} - 1}}} \right)f\left( \alpha \right) - 2\nu_{{\rm am}} - \frac{2}{{\alpha^{2} - 1}}, \\ V_{22} & = V_{23} = V_{32} = V_{33} = \left( {2\nu_{{\rm am}} - \frac{{4\alpha^{2} - 7}}{{4\left( {\alpha^{2} - 1} \right)}}} \right)f\left( \alpha \right) + \frac{{\alpha^{2} }}{{2\left( {\alpha^{2} - 1} \right)}}, \\ \end{aligned}$$
(B7)
$$\begin{aligned} MP_{IJ} & = \frac{{\lambda_{{\rm am}} \mu_{{\rm clay}} - \lambda_{{\rm clay}} \mu_{{\rm am}} }}{{\left( {\mu_{{\rm clay}} - \mu_{{\rm am}} } \right)\left[ {2\left( {\mu_{{\rm clay}} - \mu_{{\rm am}} } \right) + 3\left( {\lambda_{{\rm clay}} - \lambda_{{\rm am}} } \right)} \right]}}, \\ NP_{IJ} & = \frac{{\mu_{{\rm am}} }}{{2\left( {\mu_{{\rm clay}} - \mu_{{\rm am}} } \right)}}, \\ MI_{IJ} & = \frac{{\lambda_{{\rm am}} \left( {1 - \Omega_{IK}^{\left( i \right)} \delta_{kk} } \right) - 2\mu_{{\rm am}} \Omega_{IJ}^{\left( i \right)} }}{{2\left( {\mu_{{\rm cry}} - \mu_{{\rm am}} } \right)}}, \\ NI_{IJ} & = \frac{{\mu_{{\rm am}} }}{{2\left( {\mu_{{\rm cry}} - \mu_{{\rm am}} } \right)}}, \\ WP_{II} & = MP_{II}^{{}} + 2NP_{II} , \\ WI_{II} & = MI_{II}^{{}} + 2NI_{II}. \\ \end{aligned}$$
(B8)

in which \(\lambda\) and \(\mu\) are the Lame’s constants and

$$\left\{ {\left. {\begin{array}{*{20}c} {\Omega_{I1}^{{}} } \\ {\Omega_{I2}^{{}} } \\ {\Omega_{I3}^{{}} } \\ \end{array} } \right\}} \right. = \left[ {\begin{array}{*{20}c} \gamma & {\lambda_{{\rm cry}} - \lambda_{{\rm am}} } & {\lambda_{{\rm cry}} - \lambda_{{\rm am}} } \\ {\lambda_{{\rm cry}} - \lambda_{{\rm am}} } & \gamma & {\lambda_{{\rm cry}} - \lambda_{{\rm am}} } \\ {\lambda_{{\rm cry}} - \lambda_{{\rm am}} } & {\lambda_{{\rm cry}} - \lambda_{{\rm am}} } & \gamma \\ \end{array} } \right]^{ - 1} \left\{ {\left. {\begin{array}{*{20}c} {\lambda_{{\rm cry}} - \lambda_{{\rm am}} } \\ {\lambda_{{\rm cry}} - \lambda_{{\rm am}} } \\ {\lambda_{{\rm cry}} - \lambda_{{\rm am}} } \\ \end{array} } \right\}} \right.$$
(B9)

with \(\gamma = \lambda_{{\rm cry}} - \lambda_{{\rm am}} + 2\left( {\mu_{{\rm cry}} - \mu_{{\rm am}} } \right)\).

Appendix C

The Duvaut-Lions approach was employed to transform plasticity to viscoplasticity [47, 48]:

$${\dot{\varvec{\varepsilon }}}^{vp} = \frac{1}{\eta }{\mathbf{C}}_{{\rm am}}^{ - 1} :\left( {{\overline{\varvec{\sigma }}} - {\overline{\overline{\varvec{\sigma }}}}} \right)$$
(C1)
$${\dot{\mathbf{e}}}^{vp} = \frac{1}{\eta }\left( {{\overline{\mathbf{e}}}^{vp} - {\overline{\overline{\varvec{e}}}}^{p} } \right)$$
(C2)

where \(\eta\) is a viscosity parameter, \({\overline{\varvec{\sigma }}}\) and \({\overline{\overline{\varvec{\sigma }}}}\) are the total average viscoplastic stress tensor and the overall inviscid plastic stress tensor, respectively, and, \({\overline{\mathbf{e}}}^{vp}\) and \({\overline{\overline{\varvec{e}}}}^{p}\) are the viscoplastic strain tensor and the inviscid plastic strain tensor, respectively. The inviscid solution, in terms of the actual stress tensor \({\overline{\overline{\varvec{\sigma }}}}_{n + 1}\) and the internal variable \({\overline{\overline{\varvec{e}}}}_{n + 1}^{p}\), is updated at each increment allowing the calculation of the new stress \({\overline{\varvec{\sigma }}}_{n + 1}\) and the viscoplastic strain \({\overline{\mathbf{e}}}^{vp}_{n + 1}\) by integrating the two previous equations using a backward Euler algorithm:

$${\overline{\varvec{\sigma }}}_{n + 1} = \frac{{\left( {{\overline{\varvec{\sigma }}}_{n} + {\mathbf{C}}_{{\rm am}} :\Delta {\overline{\varvec{\varepsilon }}}_{n + 1} } \right) + \frac{{\Delta t_{n + 1} }}{\eta }{\overline{\overline{\varvec{\sigma }}}}_{n + 1} }}{{1 + \frac{{\Delta t_{n + 1} }}{\eta }}}$$
(C3)
$${\overline{\mathbf{e}}}^{vp}_{n + 1} = \frac{{{\overline{\mathbf{e}}}^{vp}_{n} + \frac{{\Delta t_{n + 1} }}{\eta }{\overline{\overline{\varvec{e}}}}^{p}_{n + 1} }}{{1 + \frac{{\Delta t_{n + 1} }}{\eta }}}$$
(C4)

where \(\Delta t_{n + 1}\) is the time step. When \({{\Delta t_{n + 1} } \mathord{\left/ {\vphantom {{\Delta t_{n + 1} } \eta }} \right. \kern-\nulldelimiterspace} \eta } \to \infty\) the inviscid solution is recovered and when \({{\Delta t_{n + 1} } \mathord{\left/ {\vphantom {{\Delta t_{n + 1} } \eta }} \right. \kern-\nulldelimiterspace} \eta } \to 0\) the elastic solution is achieved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamache, F.E., Mesbah, A., Bian, H. et al. Micromechanical modeling of the biaxial behavior of strain-induced crystallizable polyethylene terephthalate-clay nanocomposites. Arch Appl Mech 92, 2989–3003 (2022). https://doi.org/10.1007/s00419-022-02221-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02221-2

Keywords

Navigation