Skip to main content

Advertisement

Log in

Exercise at lunchtime: effect on glycemic control and oxidative stress in middle-aged men with type 2 diabetes

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Postprandial hyperglycemia and glycemic oscillations have been associated with increased oxidative stress. We sought to investigate the effect of two walking exercise protocols performed during lunchtime on glycemic control and oxidative stress in type 2 diabetic (T2D) patients.

Methods

Nine T2D patients participated in three randomized crossover trials; a control trial (Con), with participants having a standard lunch followed by their normal daily activities and two exercise trials (ContEx and Splitex). In ContEx, subjects performed 40 min of brisk walking 40 min after lunch, whereas in SplitEx the walking exercise was divided in two 20-min isoenergetic bouts, before and 40 min after meal. 24-h glycemic control was monitored by continuous glucose monitoring. 24-h urinary levels of 8-iso PGF2ɑ were measured as a marker of oxidative stress.

Results

SplitEx resulted in less time spent in moderate hyperglycemia after lunch vs ContEx (42.4 ± 38.7 % vs 68.2 ± 32.7 %, P = 0.04). ContEx reduced hyperglycemic time after breakfast consumed the morning after the exercise session (58.3 ± 29.6 Con vs 40.2 ± 33.4 % ContEx, P = 0.02). Compared with Con, 24-h urinary isoprostanes were decreased both in ContEx (−68 %, P = 0.02) and SplitEx (−63 %, P = 0.04).

Conclusions

Splitting an exercise session into two bouts, pre- and post-lunch, affects mainly the glycemic response to lunch, while a single-continuous isoenergetic session exerts its effect later in the 24-h period. Both exercise modalities effectively attenuate systemic oxidative stress with similar overall benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AUC:

Total area under the curve

Con:

Control trial

CGM:

Continous glucose monitoring

CONGA:

Continuous overlapping net glycemic action

ContEx:

Continous exercise

HbA1c:

Glycated hemoglobin

HRmax:

Maximal heart rate

HRR:

Heart rate reserve

iAUC:

Integrated area under the curve

MAGE:

Mean amplitude of glycemic excursions

RER:

Respiratory exchange ratio

RM-ANOVA:

Repeated measures analysis of variance

SplitEx:

Split exercise

SD-BGRC:

Standard deviation of blood glucose rate of change

T2D:

Type 2 diabetic patients

8-iso PGF2ɑ:

8-iso prostaglandin F2α

VO2 max:

Maximal oxygen uptake

References

  • Arikawa AY, Thomas W, Gross M et al (2013) Aerobic training reduces systemic oxidative stress in young women with elevated levels of F2-isoprostanes. Contemp Clin Trials 34:212–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Basu S (2008) F2-isoprostanes in human health and diseases: from molecular mechanisms to clinical implications. Antioxid Redox Signal 10:1405–1434

    Article  CAS  PubMed  Google Scholar 

  • Blaak EE, Antoine JM, Benton D et al (2012) Impact of postprandial glycaemia on health and prevention of disease. Obes Rev 13:923–984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blair SN, Kohl HW 3rd, Paffenbarger RS Jr, Clark DG, Cooper KHGL (1989) Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA 262:2395–23401

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann C, Blossfeld J, Pesch M et al (2012) Lipid-peroxidation and peroxiredoxin-overoxidation in the erythrocytes of non-insulin-dependent type 2 diabetic men during acute exercise. Eur J Appl Physiol 112:2277–2287

    Article  CAS  PubMed  Google Scholar 

  • Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625

    Article  CAS  PubMed  Google Scholar 

  • Campbell PT, Gross MD, Potter JD et al (2010) Effect of exercise on oxidative stress: a 12-month randomized, controlled trial. Med Sci Sports Exerc 42:1448–1453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ceriello A (2005) Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 54:1–7

    Article  CAS  PubMed  Google Scholar 

  • Ceriello A, Quagliaro L, Catone B et al (2002) Role of hyperglycemia in nitrotyrosine postprandial generation. Diabetes Care 25:1439–1443

    Article  CAS  PubMed  Google Scholar 

  • Ceriello A, Esposito K, Piconi L et al (2008) Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 57:1349–1354

    Article  CAS  PubMed  Google Scholar 

  • Chacko E (2014) Timing and intensity of exercise for glucose control. Diabetologia 57:2425–2426

    Article  PubMed  Google Scholar 

  • Clarke W, Kovatchev B (2009) Statistical tools to analyze continuous glucose monitor data. Diabetes Technol Ther 11(Suppl 1):S45–S54

    CAS  PubMed  Google Scholar 

  • Colberg SR, Zarrabi L, Bennington L et al (2009) Postprandial walking is better for lowering the glycemic effect of dinner than pre-dinner exercise in type 2 diabetic individuals. J Am Med Dir Assoc 10:394–397

    Article  PubMed  Google Scholar 

  • Colberg SR, Albright AL, Blissmer BJ et al (2010) Exercise and type 2 diabetes: American College of Sports Medicine and the American Diabetes Association: joint position statement. Exercise and type 2 diabetes. Med Sci Sports Exerc 42:2282–2303

    Article  PubMed  Google Scholar 

  • Davì G, Ciabattoni G, Consoli A et al (1999) In vivo formation of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation 99:224–229

    Article  PubMed  Google Scholar 

  • Eriksen L, Dahl-Petersen I, Haugaard SB, Dela F (2007) Comparison of the effect of multiple short-duration with single long-duration exercise sessions on glucose homeostasis in type 2 diabetes mellitus. Diabetologia 50:2245–2253

    Article  CAS  PubMed  Google Scholar 

  • Figueira FR, Umpierre D, Casali KR et al (2013) Aerobic and combined exercise sessions reduce glucose variability in type 2 diabetes: crossover randomized trial. PLoS One 8:e5773

    Article  Google Scholar 

  • Francois ME, Baldi JC, Manning PJ et al (2014) “Exercise snacks” before meals: a novel strategy to improve glycaemic control in individuals with insulin resistance. Diabetologia 57:1437–1445

    Article  CAS  PubMed  Google Scholar 

  • Gaudet-Savard T, Ferland A, Broderick TL et al (2007) Safety and magnitude of changes in blood glucose levels following exercise performed in the fasted and the postprandial state in men with type 2 diabetes. Eur J Cardiovasc Prev Rehabil 14:831–836

    Article  PubMed  Google Scholar 

  • Goto K, Tanaka K, Ishii N et al (2011) A single versus multiple bouts of moderate-intensity exercise for fat metabolism. Clin Physiol Funct Imaging 31:215–220

    Article  PubMed  Google Scholar 

  • Guerci B, Monnier L, Serusclat P et al (2012) Continuous glucose profiles with vildagliptin versus sitagliptin in add-on to metformin: results from the randomized Optima study. Diabetes Metab 38:359–366

    Article  CAS  PubMed  Google Scholar 

  • Haxhi J, Scotto Di Palumbo A, Sacchetti M (2013) Exercising for metabolic control: is timing important? Ann Nutr Metab 62:14–25

    Article  CAS  PubMed  Google Scholar 

  • Howley ET, Basset DR, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sport Exerc 27:1292–1301

    CAS  Google Scholar 

  • Kadiiska MB, Gladen BC, Baird DD et al (2005) Biomarkers of Oxidative Stress Study II. Are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radic Biol Med 38:698–710

    Article  CAS  PubMed  Google Scholar 

  • Larsen JJ, Dela F, Kjaer M, Galbo H (1997) The effect of moderate exercise on postprandial glucose homeostasis in NIDDM patients. Diabetologia 40:447–453

    Article  CAS  PubMed  Google Scholar 

  • Little JP, Gillen JB, Percival ME et al (2011) Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. J Appl Physiol 111:1554–1560

    Article  CAS  PubMed  Google Scholar 

  • Manders RJF, Van Dijk JWM, Van Loon LJC (2010) Low-intensity exercise reduces the prevalence of hyperglycemia in type 2 diabetes. Med Sci Sports Exerc 42:219–225

    Article  CAS  PubMed  Google Scholar 

  • Monnier L, Colette C, Rabasa-Lhoret R et al (2002) Morning hyperglycemic excursions. Diabetes Care 25:737–741

    Article  PubMed  Google Scholar 

  • Monnier L, Mas E, Ginet C et al (2006) Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295:1681–1687

    Article  CAS  PubMed  Google Scholar 

  • Monnier L, Colette C, Dunseath GJ, Owens DR (2007) The loss of postprandial glycemic control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care 30:263–269

    Article  PubMed  Google Scholar 

  • Morrato EH, Hill JO, Wyatt HR et al (2007) Physical activity in US adults with diabetes and at risk for developing diabetes, 2003. Diabetes Care 30:203–209

    Article  PubMed  Google Scholar 

  • Nathan DM, Buse JB, Davidson MB et al (2009) Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 32:193–203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Keefe JH, Bell DSH (2007) Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor. Am J Cardiol 100:899–904

    Article  PubMed  Google Scholar 

  • Oberlin DJ, Mikus CR, Kearney ML et al (2014) One bout of exercise alters free-living postprandial glycemia in type 2 diabetes. Med Sci Sports Exerc 46:232–238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patrono C, Falco A, Davì G (2005) Isoprostane formation and inhibition in atherothrombosis. Curr Opin Pharmacol 5:198–203

    Article  CAS  PubMed  Google Scholar 

  • Poirier P, Tremblay A, Catellier C et al (2000) Impact of time interval from the last meal on glucose response to exercise in subjects with type 2 diabetes. J Clin Endocrinol Metab 85:2860–2864

    CAS  PubMed  Google Scholar 

  • Poirier P, Mawhinney S, Grondin L et al (2001) Prior meal enhances the plasma glucose lowering effect of exercise in type 2 diabetes. Med Sci Sports Exerc 33:1259–1264

    Article  CAS  PubMed  Google Scholar 

  • Praet SFE, van Loon LJC (2007) Optimizing the therapeutic benefits of exercise in type 2 diabetes. J Appl Physiol 103:1113–1120

    Article  PubMed  Google Scholar 

  • Rains JL, Jain SK (2011) Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 50:567–575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sampson MJ, Gopaul N, Davies IR et al (2002) Plasma F2 isoprostanes: direct evidence of increased free radical damage during acute hyperglycemia in type 2 diabetes. Diabetes Care 25:537–541

    Article  CAS  PubMed  Google Scholar 

  • Trost S, Owen N, Bauman A et al (2002) Correlates of adults’ participation in physical activity: review and update. Med Sci Sport Exerc 34:1996–2001

    Article  Google Scholar 

  • Van Dijk JW, Manders RJF, Tummers K et al (2012) Both resistance- and endurance-type exercise reduce the prevalence of hyperglycaemia in individuals with impaired glucose tolerance and in insulin-treated and non-insulin-treated type 2 diabetic patients. Diabetologia 55:1273–1282

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Dijk JW, Venema M, Van Mechelen W et al (2013) Effect of moderate-intensity exercise versus activities of daily living on 24-h blood glucose homeostasis in male patients with type 2 diabetes. Diabetes Care 36:3448–3453

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Doctor Federico Quinzi for the help in data analysis and Doctor Tittania Musella for helping with patient recruitment and Medtronic Inc. for kindly providing the CGM devices. The study was supported by a grant from the University of Rome “Foro Italico” (112013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Sacchetti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Fabio Fischetti.

L. Di Luigi and M. Sacchetti contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haxhi, J., Leto, G., di Palumbo, A.S. et al. Exercise at lunchtime: effect on glycemic control and oxidative stress in middle-aged men with type 2 diabetes. Eur J Appl Physiol 116, 573–582 (2016). https://doi.org/10.1007/s00421-015-3317-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3317-3

Keywords

Navigation