Skip to main content
Log in

Glucan-rich diet is digested and taken up by the carnivorous sundew (Drosera rotundifolia L.): implication for a novel role of plant β-1,3-glucanases

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Carnivory in plants evolved as an adaptation strategy to nutrient-poor environments. Thanks to specialized traps, carnivorous plants can gain nutrients from various heterotrophic sources such as small insects. Digestion in traps requires a coordinated action of several hydrolytic enzymes that break down complex substances into simple absorbable nutrients. Among these, several pathogenesis-related proteins including β-1,3-glucanases have previously been identified in digestive fluid of some carnivorous species. Here we show that a single acidic endo-β-1,3-glucanase of ~50 kDa is present in the digestive fluid of the flypaper-trapped sundew (Drosera rotundifolia L.). The enzyme is inducible with a complex plant β-glucan laminarin from which it releases simple saccharides when supplied to leaves as a substrate. Moreover, thin-layer chromatography of digestive exudates showed that the simplest degradation products (especially glucose) are taken up by the leaves. These results for the first time point on involvement of β-1,3-glucanases in digestion of carnivorous plants and demonstrate the uptake of saccharide-based compounds by traps. Such a strategy could enable the plant to utilize other types of nutritional sources e.g., pollen grains, fungal spores or detritus from environment. Possible multiple roles of β-1,3-glucanases in the digestive fluid of carnivorous sundew are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CP:

Carnivorous plant

Hpi:

Hours post induction

PR:

Pathogenesis-related

References

  • Adamec L (1997) Mineral nutrition of carnivorous plants: a review. Bot Rev 63:273–299

    Article  Google Scholar 

  • Adlassnig W, Koller-Peroutka M, Bauer S, Koshkin E, Lendl T, Lichtscheidl IK (2012) Endocytotic uptake of nutrients in carnivorous plants. Plant J 71:303–313

    Article  PubMed  CAS  Google Scholar 

  • Albert VA, Williams SE, Chase MW (1992) Carnivorous plants: phylogeny and structural evolution. Science 257:1491–1495

    Article  PubMed  CAS  Google Scholar 

  • Bauer U, Willmes C, Federle W (2009) Effect of pitcher age on trapping efficiency and natural prey capture in carnivorous Nepenthes rafflesiana plants. Ann Bot 103:1219–1226

    Article  PubMed  Google Scholar 

  • Bauer U, Clemente CJ, Renner T, Federle W (2012) Form follows function: morphological diversification and alternative trapping strategies in carnivorous Nepenthes pitcher plants. J Evol Biol 25:90–102

    Article  PubMed  Google Scholar 

  • Bennet KF, Ellison AM (2009) Nectar, not colour, may lure insects to their death. Biol Lett 5:469–472

    Article  Google Scholar 

  • Bobák M, Blehová A, Krištín J, Ovečka M, Šamaj J (1995) Direct plant regeneration from leaf explants of Drosera rotundifolia cultured in vitro. Plant Cell Tiss Org Cult 43:43–49

    Article  Google Scholar 

  • Boller T (1987) Hydrolytic enzymes in plant disease resistance. In: Kosuge T, Nester EW (eds) Plant microbe interactions: molecular and genetic properties. Macmillan, New York, pp 385–413

    Google Scholar 

  • Boller T (1993) Antimicrobial functions of the plant hydrolases, chitinase and ß-1,3-glucanase. In: Fritig B, Legrand M (eds) Mechanisms of plant defense responses. Kluwer Academic Publishers, Dordrecht, pp 391–400

    Chapter  Google Scholar 

  • Buch F, Rott M, Rottloff S, Paetz C, Hilke I, Raessler M, Mithöfer A (2013) Secreted pitfall-trap fluid of carnivorous Nepenthes plants is unsuitable for microbial growth. Ann Bot 111:375–383

    Article  PubMed  CAS  Google Scholar 

  • Clancy FGA, Coffey MD (1977) Acid phosphatase and protease release by the insectivorous plant Drosera rotundifolia. Can J Bot 56:480–488

    Article  Google Scholar 

  • Dong JZ, Dunstan DI (1997) Endo chitinase and beta-1,3-glucanase genes are developmentally regulated during somatic embryogenesis in Picea glauca. Planta 201:189–194

    Article  PubMed  CAS  Google Scholar 

  • Eilenberg H, Pnini-Cohen S, Schuster S, Movtchan A, Zilberstein A (2006) Isolation and characterization of chitinase genes from pitchers of the carnivorous plant Nepenthes khasiana. J Exp Bot 57:2775–2784

    Article  PubMed  CAS  Google Scholar 

  • Ernst D, Bodemann A, Schmelzer E, Langebartels C, Sandermann H (1996) Beta-1,3-Glucanase mRNA is locally, but not systemically induced in Nicotiana tabacum L. cv Bel W3 after ozone fumigation. J Plant Physiol 148:215–221

    Article  CAS  Google Scholar 

  • Etxeberria E, Baroja-Fernandez E, Munoz FJ, Pozueta-Romero J (2005) Sucrose-inducible endocytosis as a mechanism for nutrient uptake in heterotrophic plant cells. Plant Cell Physiol 46:474–481

    Article  PubMed  CAS  Google Scholar 

  • Fabian-Galan G, Salageanu N (1968) Considerations on the nutrition of certain carnivorous plants (Drosera capensis and Aldrovanda vesiculosa). Rev Roum Biol Bot 13:275–280

    CAS  Google Scholar 

  • Gallie DR, Chang SC (1997) Signal transduction in the carnivorous plant Sarracenia purpurea. Regulation of secretory hydrolase expression during development and in response to resources. Plant Physiol 115:1461–1471

    Article  PubMed  CAS  Google Scholar 

  • Gaume L, Forterre Y (2007) A viscoelastic deadly fluid in carnivorous pitcher plants. PLoS ONE 2:e1185

    Article  PubMed  Google Scholar 

  • Givnish TJ, Burkhardt EL, Happel RE, Weintraub JD (1984) Carnivory in the bromeliad Brocchinia reducta with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient poor habitats. Am Nat 124:479–497

    Article  Google Scholar 

  • Givnish TJ, Barfuss MHJ, Van Ee B, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith JAC, Winter K, Brown GK, Evans TM, Holst BK, Luther H, Till W, Zizka G, Berry PE, Sytsma KJ (2011) Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight-locus plastid phylogeny. Am J Bot 98:872–895

    Article  PubMed  Google Scholar 

  • Harder R, Zemlin I (1968) Blütenbildung von Pinguicula lusitanica in vitro durch Fütterung mit Pollen. Planta 78:72–78

    Article  Google Scholar 

  • Hatano N, Hamada T (2008) Proteome analysis of pitcher fluid of the carnivorous plant Nepenthes alata. J Proteome Res 7:809–816

    Article  PubMed  CAS  Google Scholar 

  • Hatano N, Hamada T (2012) Proteomic analysis of secreted protein induced by a component of prey in pitcher fluid of the carnivorous plant Nepenthes alata. J Proteomics 75:4844–4852

    Article  PubMed  CAS  Google Scholar 

  • Helleboid S, Bauw G, Belingheri L, Vasseur J, Hilbert JL (1998) Extracellular beta-1,3-glucanases are induced during early somatic embryogenesis in Cichorium. Planta 205:56–63

    Article  PubMed  CAS  Google Scholar 

  • Hrmová M, Fincher GB (1993) Purification, characterization and gene structure of (1 → 3)-β-glucanase isoenzyme GIII from barley (Hordeum vulgare). Biochem J 289:453–461

    PubMed  Google Scholar 

  • Inbar J, Chet I (1991) Detection of chitinolytic activity in the rhizosphere using image analysis. Soil Biol Biochem 23:239–242

    Article  CAS  Google Scholar 

  • Ishisaki K, Arai S, Hamada T, Honda Y (2012a) Biochemical characterization of a recombinant plant class III chitinase from the pitcher of the carnivorous plant Nepenthes alata. Carbohydr Res 361:170–174

    Article  PubMed  CAS  Google Scholar 

  • Ishisaki K, Honda Y, Taniguchi H, Hatano N, Hamada T (2012b) Heterogonous expression and characterization of a plant class IV chitinase from the pitcher of the carnivorous plant Nepenthes alata. Glycobiology 22:345–351

    Article  PubMed  CAS  Google Scholar 

  • Jach G, Gornhardt B, Mundy J, Logemann J, Pinsdorf P, Leah R, Schell J, Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8:97–109

    Article  PubMed  CAS  Google Scholar 

  • Juniper BE, Robins RJ, Joel DM (1989) The carnivorous plants. Academic Press, London

    Google Scholar 

  • Kauss H (1989) Fluorometric measurement of callose and other 1,3-β-glucans. In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis: Plant fibers. Springer, Berlin, pp 127–137

    Chapter  Google Scholar 

  • Koopman MM, Fuselier DM, Hird S, Carstens BC (2010) The carnivorous pale pitcher plant harbors diverse, distinct, and time-dependent bacterial communities. Appl Environ Microbiol 76:1851–1860

    Article  PubMed  CAS  Google Scholar 

  • Krol E, Plachno BJ, Adamec L, Stolarz M, Dziubinska H, Trebacz K (2012) Quite a few reasons for calling carnivores ‘the most wonderful plants in the world’. Ann Bot 109:47–64

    Article  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Levy A, Erlanger M, Rosenthal M, Epel BL (2007) A plasmodesmata-associated beta-1,3-glucanase in Arabidopsis. Plant J 49:669–682

    Article  PubMed  CAS  Google Scholar 

  • Libantova J, Kamarainen T, Moravcikova J, Matusikova I, Salaj J (2009) Detection of chitinolytic enzymes with different substrate specificity in tissues of intact sundew (Drosera rotundifolia L.). Mol Biol Rep 36:851–856

    Article  PubMed  CAS  Google Scholar 

  • Lotan T, Ori N, Fluhr R (1989) Pathogenesis-related proteins are developmentally regulated in tobacco flowers. Plant Cell 1:881–887

    PubMed  CAS  Google Scholar 

  • Matušíková I, Libantová J, Moravčíková J, Mlynárová L, Nap JP (2004) The insectivorous sundew (Drosera rotundifolia L.) might be a novel source of PR genes for biotechnology. Biologia 59:719–725

    Google Scholar 

  • Matušíková I, Salaj J, Moravčíková J, Mlynárová L, Nap JP, Libantová J (2005) Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifolia L.) show induction of chitinase activity upon mimicking the presence of prey. Planta 222:1020–1027

    Article  PubMed  Google Scholar 

  • Meier H, Kesting U, Poppe S (1981) Effect of native crude fiber on the digestibility of nitrogen and amino acids in pigs. Arch Tierernahr 31:187–193

    Article  PubMed  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mithöfer A (2011) Carnivorous pitcher plants: insights in an old topic. Phytochemistry 72:1678–1682

    Article  PubMed  Google Scholar 

  • Moravčíková J, Libantová J, Heldák J, Salaj J, Bauer M, Matušíková I, Gálová Z, Mlynárová L (2007) Stress-induced expression of cucumber chitinase and Nicotiana plumbaginifolia beta-1,3-glucanase genes in transgenic potato plants. Acta Biol Plant 29:133–141

    Google Scholar 

  • Nakamura Y, Reichelt M, Mayer VE, Mithöfer A (2013) Jasmonates trigger prey-induced formation of ‘outer stomach’ in carnivorous sundew plants. Proc R Soc B 280:20130228

    Article  PubMed  Google Scholar 

  • Ori N, Sessa G, Lotan T, Himmelhoch S, Fluhr R (1990) A major stylar matrix polypeptide (sp41) is a member of the pathogenesis-related proteins superclass. EMBO J 9:3429–3436

    PubMed  CAS  Google Scholar 

  • Pan SQ, Ye XS, Kuc J (1991) A technique for detection of chitinase, beta-1,3-glucanase, and protein- patterns after a single separation using polyacrylamide-gel electrophoresis or isolelectrofocusing. Phytopathology 81:970–974

    Article  CAS  Google Scholar 

  • Pauchet Y, Freitak D, Heidel-Fischer HM, Heckel DG, Vogel H (2009) Immunity or digestion: glucanase activity in a glucan-binding protein family from Lepidoptera. J Biol Chem 284:2214–2224

    Article  PubMed  CAS  Google Scholar 

  • Piršelová B, Kuna R, Libantová J, Moravčíková J, Matušíková I (2011) Biochemical and physiological comparison of heavy metal-triggered defense responses in the monocot maize and dicot soybean roots. Mol Biol Rep 38:3437–3446

    Article  PubMed  Google Scholar 

  • Pranjic K (2004) Zur Ökologie karnivorer Pflanzen: Die Rolle von Mikroorganismen beim Abbau von Tieren durch fleischfressende Pflanzen. University of Vienna, Vienna, p 145

    Google Scholar 

  • Renner T, Specht CD (2012) Molecular and functional evolution of class I chitinases for plant carnivory in the Caryophyllales. Mol Biol Evol 29:2971–2985

    Article  PubMed  CAS  Google Scholar 

  • Roggen HS, Stanley RG (1969) Cell wall hydrolysing enzymes in wall formation as measured by pollen tube extension. Planta 84:295–303

    Article  CAS  Google Scholar 

  • Rost K, Schauer R (1977) Physical and chemical properties of the mucin secreted by Drosera capensis. Phytochemistry 16:1365–1368

    Article  CAS  Google Scholar 

  • Rottloff S, Stieber R, Maischak H, Turini FG, Heubl G, Mithöfer A (2011) Functional characterization of a class III acid endo chitinase from the traps of the carnivorous pitcher plant genus, Nepenthes. J Exp Bot 62:4639–4647

    Article  PubMed  CAS  Google Scholar 

  • Schlumbaum A, Mauch F, Vögeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324:365–367

    Article  CAS  Google Scholar 

  • Schulze WX, Sanggaard KW, Kreuzer I, Knudsen AD, Bemm F, Thogersen IB, Braeutigam A, Thomsen LR, Schliesky S, Dyrlund TF, Escalante-Perez M, Becker D, Schultz J, Karring H, Weber A, Hojrup P, Hedrich R, Enghild JJ (2012) The protein composition of the digestive fluid from the Venus flytrap sheds light on prey digestion mechanisms. Mol Cell Proteomics 11:1306–1319

    Article  PubMed  CAS  Google Scholar 

  • Sela-Buurlage MB, Ponstein AS, Bresvloemans SA, Melchers LS, Vandenelzen PJM, Cornelissen BJC (1993) Only specific tobacco (Nicotiana tabacum) chitinases and-1, 3-glucanase exhibit antifungal activity. Plant Physiol 101:857–863

    PubMed  CAS  Google Scholar 

  • Sirová D, Borovec J, Černá B, Rejmánková E, Adamec L, Vrba J (2009) Microbial community development in the traps of aquatic Utricularia species. Aquat Bot 90:129–136

    Article  Google Scholar 

  • Sirová D, Borovec J, Šantrůčková H, Šantrůček J, Vrba J, Adamec L (2010) Utricularia carnivory revisited: plants supply photosynthetic carbon to traps. J Exp Bot 61:99–103

    Article  PubMed  Google Scholar 

  • Takeuchi Y, Salcher MM, Ushio M, Shimizu-Inatsugi R, Kobayashi MJ, Diway B, von Mering C, Pernthaler J, Shimizu KK (2011) In situ enzyme activity in the dissolved and particulate fraction of the fluid from four pitcher plant species of the genus Nepenthes. PLoS ONE 6:e25144

    Article  PubMed  CAS  Google Scholar 

  • Thorén LM, Karlsson PS, Tuomi J (1996) Somatic cost of reproduction in three carnivorous Pinguicula species. Oikos 76:427–434

    Article  Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14:S153–S164

    PubMed  CAS  Google Scholar 

  • Vögeli-Lange R, Frundt C, Hart CM, Nagy F, Meins F (1994) Developmental, hormonal, and pathogenesis-related regulation of the tobacco class I beta-1,3-glucanase B promoter. Plant Mol Biol 25:299–311

    Article  PubMed  Google Scholar 

  • Worrall D, Hird DL, Hodge R, Paul W, Draper J, Scott R (1992) Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4:759–771

    PubMed  CAS  Google Scholar 

  • Wu CT, Bradford KJ (2003) Class I chitinase and beta-1,3-glucanase are differentially regulated by wounding, methyl jasmonate, ethylene, and gibberellin in tomato seeds and leaves. Plant Physiol 133:263–273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant from the Slovak Grant Agency VEGA No. 2/0090/14 and MVTS COST FA1006. Financial support for P. Socha was provided by the Operational Programme Research and Development for the project: “Implementation of the research of plant genetic resources and its maintaining in the sustainable management of Slovak republic” (ITMS: 26220220097), co-financed from the resources of the European Union Fund for Regional Development. We are thankful to Dr. Ľubomír Adamec (Institute of Botany AS, Czech Republic) for helpful discussions and critical reviewing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Michalko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2013_1925_MOESM1_ESM.tif

Suppl. Fig. S1 Thin-layer chromatography plates of sundew eluates (repetition 1) collected at different time points post induction (0–192 hip) with acetate buffer instead of a digestible substrate. For comparison, a sample of plant induced with laminarin for 192 h is given (192L). As reference saccharides (RefS), glucose (G) and maltose (M) were co-separated. (TIFF 1736 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michalko, J., Socha, P., Mészáros, P. et al. Glucan-rich diet is digested and taken up by the carnivorous sundew (Drosera rotundifolia L.): implication for a novel role of plant β-1,3-glucanases. Planta 238, 715–725 (2013). https://doi.org/10.1007/s00425-013-1925-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1925-x

Keywords

Navigation