Skip to main content
Log in

Stereospecificity in strigolactone biosynthesis and perception

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Plants produce strigolactones with different structures and different stereospecificities which provides the potential for diversity and flexibility of function.

Strigolactones (SLs) typically comprise a tricyclic ABC ring system linked through an enol-ether bridge to a butenolide D-ring. The stereochemistry of the butenolide ring is conserved but two alternative configurations of the B–C ring junction leads to two families of SLs, exemplified by strigol and orobanchol. Further modifications lead to production of many different strigolactones within each family. The D-ring structure is established by a carotenoid cleavage dioxygenase producing a single stereoisomer of carlactone, the likely precursor of all SLs. Subsequent oxidation involves cytochrome P450 enzymes of the MAX1 family. In rice, MAX1 enzymes act stereospecifically to produce 4-deoxyorobanchol and orobanchol. Strigol- and orobanchol-type SLs have different activities in the control of seed germination and shoot branching, depending on plant species. This can partly be explained by different stereospecificity of SL receptors which includes the KAI2/HTL protein family in parasitic plants and the D14 protein functioning in shoot development. Many studies use chemically synthesised SL analogues such as GR24 which is prepared as a racemic mixture of two stereoisomers, one with the same stereo-configuration as strigol, and the other its enantiomer, which does not correspond to any known SL. In Arabidopsis, these two stereoisomers are preferentially perceived by AtD14 and KAI2, respectively, which activate different developmental pathways. Thus caution should be exercised in the use of SL racemic mixtures, while conversely the use of specific stereoisomers can provide powerful tools and yield critical information about receptors and signalling pathways in operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AM:

Arbuscular mycorrhizal

KAR:

Karrikin

SL:

Strigolactone

References

  • Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim HI, Yoneyama K, Xie X, Ohnishi T, Seto Y, Yamaguchi S, Akiyama K, Yoneyama K, Nomura T (2014) Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Natl Acad Sci USA 111:18084–18089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Akiyama K, Ogasawara S, Ito S, Hayashi H (2010) Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol 51:1104–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186

    Article  CAS  PubMed  Google Scholar 

  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from beta-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–1351

    Article  CAS  PubMed  Google Scholar 

  • Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50:1416–1424

    Article  CAS  PubMed  Google Scholar 

  • Artuso E, Ghibaudi E, Lace B, Marabello D, Vinciguerra D, Lombardi C, Koltai H, Kapulnik Y, Novero M, Occhiato EG, Scarpi D, Parisotto S, Deagostino A, Venturello P, Mayzlish-Gati E, Bier A, Prandi C (2015) Stereochemical assignment of strigolactone analogues confirms their selective biological activity. J Nat Prod 78:2624–2633

    Article  CAS  PubMed  Google Scholar 

  • Bennett T, Leyser O (2014) Strigolactone signalling: standing on the shoulders of DWARFs. Curr Opin Plant Biol 22:7–13

    Article  CAS  PubMed  Google Scholar 

  • Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8:443–449

    Article  CAS  PubMed  Google Scholar 

  • Boyer F-D, de Saint Germain A, Pillot J-P, Pouvreau J-B, Chen VX, Ramos S, Stévenin A, Simier P, Delavault P, Beau J-M, Rameau C (2012) Structure-activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol 159:1524–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewer PB, Koltai H, Beveridge CA (2013) Diverse roles of strigolactones in plant development. Mol Plant 6:18–28

    Article  CAS  PubMed  Google Scholar 

  • Brooks DW, Bevinakatti HS, Powell DR (1985) The absolute structure of (+)-strigol. J Org Chem 50:3779–3781

    Article  CAS  Google Scholar 

  • Cavar S, Zwanenburg B, Tarkowski P (2015) Strigolactones: occurrence, structure, and biological activity in the rhizosphere. Phytochem Rev 14:691–711

    Article  CAS  Google Scholar 

  • Challis RJ, Hepworth J, Mouchel C, Waites R, Leyser O (2013) A role for MORE AXILLARY GROWTH1 (MAX1) in evolutionary diversity in strigolactone signaling upstream of MAX2. Plant Physiol 161:1885–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevalier F, Nieminen K, Sánchez-Ferrero JC, Rodríguez ML, Chagoyen M, Hardtke CS, Cubas P (2014) Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell 26:1134–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conn CE, Bythell-Douglas R, Neumann D, Yoshida S, Whittington B, Westwood JH, Shirasu K, Bond CS, Dyer KA, Nelson DC (2015) Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science 49:540–543

    Article  Google Scholar 

  • Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–1190

    Article  CAS  PubMed  Google Scholar 

  • Cook CE, Whichard LP, Wall ME, Egley GH, Coggon P, Luhan PA, McPhail AT (1972) Germination stimulants. II. The structure of strigol—a potent seed germination stimulant for witchweed (Striga lutea Lour.). J Am Chem Soc 94:6198–6199

    Article  CAS  Google Scholar 

  • Delaux P-M, Xie X, Timme RE, Puech-Pagès V, Dunand C, Lecompte E, Delwiche CF, Yoneyama K, Bécard G, Séjalon-Delmas N (2012) Origin of strigolactones in the green lineage. New Phytol 195:857–871

    Article  CAS  PubMed  Google Scholar 

  • Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2004) A compound from smoke that promotes seed germination. Science 305:977

    Article  CAS  PubMed  Google Scholar 

  • Goldwasser Y, Yoneyama K, Xie X, Yoneyama K (2008) Production of strigolactones by Arabidopsis thaliana responsible for Orobanche aegyptiaca seed germination. Plant Growth Regul 55:21–28

    Article  CAS  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  CAS  PubMed  Google Scholar 

  • Hamiaux C, Drummond RS, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012) DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22:2032–2036

    Article  CAS  PubMed  Google Scholar 

  • Hirayama K, Mori K (1999) Synthesis of (+)-strigol and (+)-orobanchol, the germination stimulants, and their stereoisomers by employing lipase-catalyzed asymmetric acetylation as the key step. Eur J Org Chem 1999:2211–2217

    Article  Google Scholar 

  • Igbinnosa I, Okonkwo SNC (1992) Stimulation of germination of seeds of cowpea witchweed (Striga gesnerioides) by sodium hypochlorite and some growth regulators. Weed Sci 40:25–28

    CAS  Google Scholar 

  • Johnson AW, Gowada G, Hassanali A, Knox J, Monaco S, Razavi Z, Roseberry G (1981) The preparation of synthetic analogues of strigol. J Chem Soc Perkin Trans 1:1734–1743

    Article  Google Scholar 

  • Kameoka H, Kyozuka J (2015) Downregulation of rice DWARF 14 LIKE suppress mesocotyl elongation via a strigolactone independent pathway in the dark. J Genet Genomics 42:119–124

    Article  PubMed  Google Scholar 

  • Kim HI, Xie XN, Kim HS, Chun JC, Yoneyama K, Nomura T, Takeuchi Y, Yoneyama K (2010) Structure-activity relationship of naturally occurring strigolactones in Orobanche minor seed germination stimulation. J Pest Sci 35:344–347

    Article  CAS  Google Scholar 

  • Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangnus EM, Dommerholt FJ, Dejong RLP, Zwanenburg B (1992) Improved synthesis of strigol analog GR24 and evaluation of the biological-activity of its diastereomers. J Agric Food Chem 40:1230–1235

    Article  CAS  Google Scholar 

  • Mori K, Matsui J, Yokota T, Sakai H, Bando M, Takeuchi Y (1999) Structure and synthesis of orobanchol, the germination stimulant for Orobanche minor. Tetrahedron Lett 40:943–946

    Article  CAS  Google Scholar 

  • Nakamura H, Xue YL, Miyakawa T, Hou F, Qin HM, Fukui K, Shi X, Ito E, Ito S, Park SH, Miyauchi Y, Asano A, Totsuka N, Ueda T, Tanokura M, Asami T (2013) Molecular mechanism of strigolactone perception by DWARF14. Nat Commun 4:2613

    PubMed  Google Scholar 

  • Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge CA, Ghisalberti EL, Smith SM (2011) F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc Natl Acad Sci USA 108:8897–8902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DC, Flematti GR, Ghisalberti EL, Dixon KW, Smith SM (2012) Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu Rev Plant Biol 63:107–130

    Article  CAS  PubMed  Google Scholar 

  • Nomura S, Nakashima H, Mizutani M, Takikawa H, Sugimoto Y (2013) Structural requirements of strigolactones for germination induction and inhibition of Striga gesnerioides seeds. Plant Cell Rep 32:829–838

    Article  CAS  PubMed  Google Scholar 

  • Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H (2013) The biology of strigolactones. Trends Plant Sci 18:72–83

    Article  CAS  PubMed  Google Scholar 

  • Scaffidi A, Waters MT, Bond CS, Dixon KW, Smith SM, Ghisalberti EL, Flematti GR (2012) Exploring the molecular mechanism of karrikins and strigolactones. Bioorg Med Chem Lett 22:3743–3746

    Article  CAS  PubMed  Google Scholar 

  • Scaffidi A, Waters MT, Ghisalberti EL, Dixon KW, Flematti GR, Smith SM (2013) Carlactone-independent seedling morphogenesis in Arabidopsis. Plant J 76:1–9

    CAS  PubMed  Google Scholar 

  • Scaffidi A, Waters MT, Sun YK, Skelton BW, Dixon KW, Ghisalberti EL, Flematti GR, Smith SM (2014) Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiol 165:1221–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seto Y, Sado A, Asami K, Hanada A, Umehara M, Akiyama K, Yamaguchi S (2014) Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc Natl Acad Sci USA 111:1640–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SM, Li J (2014) Signalling and responses to strigolactones and karrikins. Curr Opin Plant Biol 21:23–29

    Article  CAS  PubMed  Google Scholar 

  • Sun X-D, Ni M (2011) HYPOSENSITIVE TO LIGHT, an alpha/beta fold protein, acts downstream of ELONGATED HYPOCOTYL 5 to regulate seedling de-etiolation. Mol Plant 4:116–126

    Article  CAS  PubMed  Google Scholar 

  • Toh S, Holbrook-Smith D, Stogios PJ, Onopriyenko O, Lumba S, Tsuchiya Y, Savchenko A, McCourt P (2015) Structure-function analysis identifies highly sensitive strigolactone receptors in Striga. Science 350:203–207

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya Y, Yoshimura M, Sato Y, Kuwata K, Toh S, Holbrook-Smith D, Zhang H, McCourt P, Itami K, Kinoshita T, Hagihara S (2015) Parasitic plants. Probing strigolactone receptors in Striga hermonthica with fluorescence. Science 349:864–868

    Article  CAS  PubMed  Google Scholar 

  • Ueno K, Nomura S, Muranaka S, Mizutani M, Takikawa H, Sugimoto Y (2011) Ent-2 ‘-epi-orobanchol and its acetate, as germination stimulants for Striga gesnerioides seeds isolated from cowpea and red clover. J Agric Food Chem 59:10485–10490

    Article  CAS  PubMed  Google Scholar 

  • Ueno K, Sugimoto Y, Zwanenburg B (2015) The genuine structure of alectrol: end of a long controversy. Phytochem Rev 14:835–847

    Article  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Cao M, Akiyama K, Akatsu T, Seto Y, Hanada A, Li W, Takeda-Kamiya N, Morimoto Y, Yamaguchi S (2015) Structural requirements of strigolactones for shoot branching inhibition in rice and Arabidopsis. Plant Cell Physiol 56:1059–1072

    Article  PubMed  Google Scholar 

  • Vurro M, Yoneyama K (2012) Strigolactones—intriguing biologically active compounds: perspectives for deciphering their biological role and for proposing practical application. Pest Manag Sci 68:664–668

    Article  CAS  PubMed  Google Scholar 

  • Waldie T, McCulloch H, Leyser O (2014) Strigolactones and the control of plant development: lessons from shoot branching. Plant J 79:607–622

    Article  CAS  PubMed  Google Scholar 

  • Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW, Smith SM (2012a) Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139:1285–1295

    Article  CAS  PubMed  Google Scholar 

  • Waters MT, Scaffidi A, Flematti GR, Smith SM (2012b) Karrikins force a rethink of strigolactone mode of action. Plant Signal Behav 7:969–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters MT, Scaffidi A, Flematti GR, Smith SM (2013) The origins and mechanisms of karrikin signalling. Curr Opin Plant Biol 16:667–673

    Article  CAS  PubMed  Google Scholar 

  • Waters MT, Scaffidi A, Sun YK, Flematti GR, Smith SM (2014) The karrikin response system of Arabidopsis. Plant J 79:623–631

    Article  CAS  PubMed  Google Scholar 

  • Waters MT, Scaffidi A, Moulin SL, Sun YK, Flematti GR, Smith SM (2015) A Selaginella moellendorffii ortholog of KARRIKIN INSENSITIVE2 functions in Arabidopsis development but cannot mediate responses to karrikins or strigolactones. Plant Cell 27:1925–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie XN, Yoneyama K, Kisugi T, Uchida K, Ito S, Akiyama K, Hayashi H, Yokota T, Nomura T, Yoneyama K (2013) Confirming stereochemical structures of strigolactones produced by rice and tobacco. Mol Plant 6:153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota T, Sakai H, Okuno K, Yoneyama K, Takeuchi Y (1998) Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover. Phytochemistry 49:1967–1973

    Article  CAS  Google Scholar 

  • Zhang Y, van Dijk AD, Scaffidi A, Flematti GR, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O, Smith SM, Zwanenburg B, Al-Babili S, Ruyter-Spira C, Bouwmeester HJ (2014) Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol 10:1028–1033

    Article  PubMed  Google Scholar 

  • Zhao LH, Zhou XE, Wu ZS, Yi W, Xu Y, Li S, Xu TH, Liu Y, Chen RZ, Kovach A, Kang Y, Hou L, He Y, Xie C, Song W, Zhong D, Xu Y, Wang Y, Li J, Zhang C, Melcher K, Xu HE (2013) Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res 23:436–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao LH, Zhou XE, Yi W, Wu Z, Liu Y, Kang Y, Hou L, de Waal PW, Li S, Jiang Y, Scaffidi A, Flematti GR, Smith SM, Lam VQ, Griffin PR, Wang Y, Li J, Melcher K, Xu HE (2015) Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Res 25:1219–1236

    Article  CAS  PubMed  Google Scholar 

  • Zwanenburg B, Pospisil T (2013) Structure and activity of strigolactones: new plant hormones with a rich future. Mol Plant 6:38–62

    Article  CAS  PubMed  Google Scholar 

  • Zwanenburg B, Cavar Zeljkovic S, Pospisil T (2016) Synthesis of strigolactones, a strategic account. Pest Manag Sci 72:15–29

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Australian Research Council (DP130103646; FT110100304). SMS acknowledges award of a Chinese Academy of Sciences Senior International Scientist Visiting Professorship and President’s International Fellowship (2013T1S0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Smith.

Additional information

A contribution to the special issue on Strigolactones.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flematti, G.R., Scaffidi, A., Waters, M.T. et al. Stereospecificity in strigolactone biosynthesis and perception. Planta 243, 1361–1373 (2016). https://doi.org/10.1007/s00425-016-2523-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2523-5

Keywords

Navigation