Skip to main content
Log in

Ultrastructural analysis of mouse embryonic stem cell-derived chondrocytes

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

Pluripotent embryonic stem (ES) cells cultivated as cellular aggregates, so called embryoid bodies (EBs), differentiate spontaneously into different cell types of all three germ layers in vitro resembling processes of cellular differentiation during embryonic development. Regarding chondrogenic differentiation, murine ES cells differentiate into progenitor cells, which form pre-cartilaginous condensations in the EB-outgrowths and express marker molecules characteristic for mesenchymal cell types such as Sox5 and Sox6. Later, mature chondrocytes appear which express collagen type II, and the collagen fibers show a typical morphology as demonstrated by electron-microscopical analysis. These mature chondrogenic cells are organized in cartilage nodules and produce large amounts of extracellular proteoglycans as revealed by staining with cupromeronic blue. Finally, cells organized in nodules express collagen type X, indicating the hypertrophic stage. In conclusion, differentiation of murine ES cells into chondrocytes proceeds from the undifferentiated stem cell via progenitor cells up to mature chondrogenic cells, which then undergo hypertrophy. Furthermore, because the ES-cell-derived chondrocytes did not express elastin, a marker for elastic cartilage tissue, we suggest the cartilage nodules to resemble hyaline cartilage tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bianco P, Cancedda FD, Riminucci M, Cancedda R (1998) Bone formation via cartilage models: the "borderline" chondrocyte. Matrix Biol 17:185–192

    Article  PubMed  CAS  Google Scholar 

  • Cancedda R, Castagnola P, Cancedda FD, Dozin B, Quarto R (2000) Developmental control of chondrogenesis and osteogenesis. Int J Dev Biol 44:707–714

    PubMed  CAS  Google Scholar 

  • de Crombrugghe B, Lefebvre V, Nakashima K (2001) Regulatory mechanisms in the pathways of cartilage and bone formation. Curr Opin Cell Biol 13:721–727

    Article  PubMed  Google Scholar 

  • Cserjesi P, Brown D, Ligon KL, Lyons GE, Copeland NG, Gilbert DJ, Jenkins NA, Olson EN (1995) Scleraxis: a basic helix-loop-helix protein that prefigures skeletal formation during mouse embryogenesis. Development 121:1099–1110

    PubMed  CAS  Google Scholar 

  • Erenpreisa J, Roach HI (1996) Epigenetic selection as a possible component of transdifferentiation. Further study of the commitment of hypertrophic chondrocytes to become osteocytes. Mech Ageing Dev 87:165–182

    Article  PubMed  CAS  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  PubMed  CAS  Google Scholar 

  • Eyre DR, Muir H (1975) The distribution of different molecular species of collagen in fibrous, elastic and hyaline cartilages of the pig. Biochem J 151:595–602

    PubMed  CAS  Google Scholar 

  • Hegert C, Kramer J, Hargus G, Müller J, Guan K, Wobus AM, Müller PK, Rohwedel J (2002) Differentiation plasticity of chondrocytes derived from mouse embryonic stem cells. J Cell Sci 115:4617–4628

    Article  PubMed  CAS  Google Scholar 

  • Johansson BM, Wiles MV (1995) Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol Cell Biol 15:141–151

    PubMed  CAS  Google Scholar 

  • Karsenty G (2003) The complexities of skeletal biology. Nature 423:316–318

    Article  PubMed  CAS  Google Scholar 

  • Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389–406

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi J, Mee PJ, Smith AG (2005) Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors. Bone 36:758–769

    Article  PubMed  CAS  Google Scholar 

  • Kramer J, Hegert C, Guan K, Wobus AM, Müller PK, Rohwedel J (2000) Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev 92:193–205

    Article  PubMed  CAS  Google Scholar 

  • Kramer J, Hegert C, Rohwedel J (2003) In Vitro Differentiation of Mouse ES cells: Bone and Cartilage. Methods Enzymol 365:251–268

    Article  PubMed  CAS  Google Scholar 

  • Kramer J, Hegert C, Hargus G, Rohwedel J (2005) Mouse ES cell lines show a variable degree of chondrogenic differentiation in vitro. Cell Biol Int 29:139–146

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre V, Li P, de Crombrugghe B (1998) A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J 17:5718–5733

    Article  PubMed  CAS  Google Scholar 

  • Linsenmayer TF, Hendrix MJ (1980) Monoclonal antibodies to connective tissue macromolecules: type II collagen. Biochem Biophys Res Commun 92:440–446

    Article  PubMed  CAS  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638

    Article  PubMed  CAS  Google Scholar 

  • Mitrovic DR (1977) Development of the metatarsophalangeal joint of the chick embryo: morphological, ultrastructural and histochemical studies. Am J Anat 150:333–347

    Article  PubMed  CAS  Google Scholar 

  • Moskalewski S (1976) Elastic fiber formation in monolayer and organ cultures of chondrocytes isolated from auricular cartilage. Am J Anat 146:443–448

    Article  PubMed  CAS  Google Scholar 

  • Nakayama N, Duryea D, Manoukian R, Chow G, Han CY (2003) Macroscopic cartilage formation with embryonic stem-cell-derived mesodermal progenitor cells. J Cell Sci 116:2015–2028

    Article  PubMed  CAS  Google Scholar 

  • Olsen BR, Reginato AM, Wang W (2000) Bone development. Annu Rev Cell Dev Biol 16:191–220

    Article  PubMed  CAS  Google Scholar 

  • Pavlov MI, Sautier JM, Oboeuf M, Asselin A, Berdal A (2003) Chondrogenic differentiation during midfacial development in the mouse: in vivo and in vitro studies. Biol Cell 95:75–86

    Article  PubMed  CAS  Google Scholar 

  • Phillips BW, Belmonte N, Vernochet C, Ailhaud G, Dani C (2001) Compactin enhances osteogenesis in murine embryonic stem cells. Biochem Biophys Res Commun 284:478–484

    Article  PubMed  CAS  Google Scholar 

  • Provot S, Schipani E (2005) Molecular mechanisms of endochondral bone development. Biochem Biophys Res Commun 328:658–665

    Article  PubMed  CAS  Google Scholar 

  • Rodda SJ, Kavanagh SJ, Rathjen J, Rathjen PD (2002) Embryonic stem cell differentiation and the analysis of mammalian development. Int J Dev Biol 46:449–458

    PubMed  CAS  Google Scholar 

  • Rohwedel J, Guan K, Zuschratter W, Jin S, Ahnert-Hilger G, Fürst D, Fässler R, Wobus AM (1998) Loss of beta1 integrin function results in a retardation of myogenic, but an acceleration of neuronal, differentiation of embryonic stem cells in vitro. Dev Biol 201:167–184

    Article  PubMed  CAS  Google Scholar 

  • Sandell LJ, Adler P (1999) Developmental patterns of cartilage. Front Biosci 4:D731–D742

    Article  PubMed  CAS  Google Scholar 

  • Scott JE (1985) Proteoglycan histochemistry–a valuable tool for connective tissue biochemists. Coll Relat Res 5:541–575

    PubMed  CAS  Google Scholar 

  • Stoeckelhuber M, Stumpf P, Hoefter EA, Welsch U (2002) Proteoglycan-collagen associations in the non-lactating human breast connective tissue during the menstrual cycle. Histochem Cell Biol 118:221–230

    PubMed  CAS  Google Scholar 

  • Sui Y, Clarke T, Khillan JS (2003) Limb bud progenitor cells induce differentiation of pluripotent embryonic stem cells into chondrogenic lineage. Differentiation 71:578–585

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Murphy CL, Murphy C, Kimura M, Kawai S, Polak JM (2004) Chondrogenic differentiation of murine embryonic stem cells: effects of culture conditions and dexamethasone. J Cell Biochem 93:454–462

    Article  PubMed  CAS  Google Scholar 

  • Wobus AM, Grosse R, Schöneich J (1988) Specific effects of nerve growth factor on the differentiation pattern of mouse embryonic stem cells in vitro. Biomed Biochim Acta 47:965–973

    PubMed  CAS  Google Scholar 

  • Yamada G, Kioussi C, Schubert FR, Eto Y, Chowdhury K, Pituello F, Gruss P (1994) Regulated expression of Brachyury(T), Nkx1.1 and Pax genes in embryoid bodies. Biochem Biophys Res Commun 199:552–563

    Article  PubMed  CAS  Google Scholar 

  • zur Nieden NI, Kempka G, Rancourt DE, Ahr HJ (2005) Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev Biol 5:1

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The skilful technical assistance of A. Eirich and M. Dose is gratefully acknowledged. The work was supported by the Medical Faculty of the University of Lübeck and funded by Intermed Service GmbH&CoKG (Geesthacht, Germany) and Eppendorf AG (Hamburg, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kramer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, J., Klinger, M., Kruse, C. et al. Ultrastructural analysis of mouse embryonic stem cell-derived chondrocytes. Anat Embryol 210, 175–185 (2005). https://doi.org/10.1007/s00429-005-0020-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-005-0020-x

Keywords

Navigation