Skip to main content

Advertisement

Log in

How long is a piece of Strix? Methods in measuring and measuring the measurers

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

An experiment to quantify intra- and interobserver error in anatomical measurements found that interobserver measurements can vary by over 14% of mean specimen length; disparity in measurement increases logarithmically with the number of contributors; instructions did not reduce variation or measurement disparity; scale of the specimen influenced the precision of measurement (relative error increasing with specimen size); different methods of taking a measurement yielded different results, although they did not differ in terms of precision, and topographical complexity of the elements being considered may potentially influence error (error increasing with complexity). These results highlight concerns about introduction of noise and potential bias that should be taken into account when compiling composite datasets and meta-analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the ‘revolution’. Ital J Zool 71:5–16

    Article  Google Scholar 

  • Ashton KG, Tracy MC, de Queiroz A (2000) Is Bergmann’s rule valid for mammals? Am Nat 156(4):390–415

    Article  Google Scholar 

  • Bailey SE, Pilbrow VC, Wood BA (2004) Interobserver error involved in independent attempts to measure cusp base areas of Pan M1s. J Anat 205:323–331

    Article  PubMed  Google Scholar 

  • Bochenski ZM (2008) Identification of skeletal remains of closely related species: the pitfalls and solutions. J Archeol Sci 35:1247–1250

    Article  Google Scholar 

  • Bochenski ZM, Tomek T (1995) How many comparative skeletons do we need to identify a bird bone? Courier Forschunginstitut Senckrnberg 181:357–361

    Google Scholar 

  • Chen P-J, Dong Z-M, Zhen S-N (1998) An exceptionally well-preserved theropod dinosaur from the Yixian Formation of China. Nat 391:147–152

    Article  CAS  Google Scholar 

  • Christiansen P, Adolfssen JS (2005) Bite force canine strength and skull allometry in carnivores (Mammalia Carnivora). J Zool Lon 266:133–151

    Article  Google Scholar 

  • Clegg SM, Owens IPF (2002) The ‘island rule’ in birds: medium body size and its ecological explanation. P Roy Soc Lond B Bio 269(1498):1359–1365

    Article  Google Scholar 

  • Conover WJ, Johnson ME, Johnson MM (1981) A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics 23(4):351–361

    Article  Google Scholar 

  • Constantinescu GM (2002) Clinical anatomy for small animal practitioners. Iowa State Press, Blackwell Publishing Company, Iowa

    Google Scholar 

  • Creighton GK (1980) Static allometry of mammalian teeth and the correlation of tooth size and body size in contemporary mammals. J Zoo 191:435–443

    Article  Google Scholar 

  • Currie PJ, Zhao X-J (1993) A new carnosaur (Dinosauria Theropoda) from the Jurassic of Xinjiang People’s Republic of China. Can J Earth Sci 30(10):2037–2081

    Google Scholar 

  • Delany MJ, Healy MJR (1965) Variation in the white-toothed shrews (Crocidura spp) in the British Isles. Proc Roy Soc Lond B Bio 164(994):63–74

    Article  Google Scholar 

  • Dryden IL, Mardia KV (1998) Statistical analysis of shape. Wiley, London

    Google Scholar 

  • Erickson GM, Lappin AK, Vliet KA (2003) The ontogeny of bite-force performance in American alligator (Alligator mississippiensis). J Zool 260:317–327

    Article  Google Scholar 

  • Farlow JO, Hurlburt GR, Elsey RM, Britton ARC, Langston W (2005) Femoral dimensions and body size of Alligator mississippiensis: estimating the size of extinct mesoeucrocodylians. J Vertebr Paleontol 25(2):354–369

    Article  Google Scholar 

  • Fligner MA, Killeen TJ (1976) Distribution-free two-sample tests for scale. J Am Stat Assoc 71(353):210–213

    Article  Google Scholar 

  • Freeman S, Jackson WM (1990) Univariate metrics are not adequate to measure avian body size. Auk 107(1):69–74

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9. http://palaeo-electronicaorg/2001_1/past/issue1_01htm. Accessed 6 Mar 2009

  • Herrel A, de Grauw E, Lemos-Espinal JA (2001) Head shape and bite performance in xenosaurid lizards. J Exp Zool 290:101–107

    Article  PubMed  CAS  Google Scholar 

  • Holtz T (1994) The arctometatarsalian pes, an unusual structure of the metatarsus of Cretaceous Theropoda (Dinosauria: Saurischia). J Vertebr Paleontol 14(4):480–519

    Google Scholar 

  • Kieser JA, Groeneveld HT (1987) Static intraspecific allometry of jaws and teeth in Cercopithecus aethiops. J Zool 212:499–510

    Article  Google Scholar 

  • Laurin M (2004) The evolution of body size, Cope’s rule and the origin of Amniotes. Syst Biol 53(4):594–622

    Article  PubMed  Google Scholar 

  • Lee S, Mill PJ (2004) Cranial variation in British mustelids. J Morphol 260(1):57–64

    Article  PubMed  CAS  Google Scholar 

  • Lynch JM, Whelan R, Il Fituri AI, Hayden TJ (1997) Craniometric variation in the Eurasian badger. J Zool 242:31–44

    Article  Google Scholar 

  • Marcus LF, Hingst-Zaher E, Zaher H (2000) Application of landmark morphometrics to skulls representing the orders of living mammals. Hystrix 11(1):27–47

    Google Scholar 

  • Melisch R, Reitshel M (1996) The Eurasian otter Lutra lutra in Afghanistan. Bonn Zool Beitr 46:367–375

    Google Scholar 

  • Meyers JJ, Herrel A, Birch J (2002) Scaling of morphology bite force and feeding kinematics in an iguanian and scleroglossan lizard. In: Aerts P, D’Aout K, Herrel A, Van Damme R (eds) Topics in functional ecological vertebrate morphology. Shaker Publishing, Maastricht, pp 47–62

    Google Scholar 

  • Nudds RL, Dyke GJ, Rayner JMV (2004) Forelimb proportions and the evolutionary radiation of Neornithes. Proc Roy Soc Lond B Bio 271(5):S324–S327

    Article  Google Scholar 

  • Pierce SE, Angielczyk KD, Rayfield EJ (2008) Patterns of morphospace occupation and mechanical performance in extant crocodilian skulls: a combined geometric morphometric and finite element modeling approach. J Morphol 269(7):840–864

    Article  PubMed  Google Scholar 

  • Rohlf FR (1990) Morphometrics. Annu Rev Ecol Syst 21:299–316

    Article  Google Scholar 

  • Schnell GD, Worthen GL, Douglas ME (1985) Morphometric assessment of sexual dimorphism in skeletal elements of California gulls. Condor 87(4):484–493

    Article  Google Scholar 

  • Sues HD (1977) The skull of Velociraptor mongoliensis a small Cretaceous theropod dinosaur from Mongolia. Paläontol Z 51:173–184

    Google Scholar 

  • Thomason JJ (1991) Cranial strength in relation to estimated biting forces in some mammals. Can J Zool 69:2326–2333

    Article  Google Scholar 

  • Tiwari M, Bjorndal KA (2000) Variation in morphology and reproduction in loggerheads, Caretta caretta, nesting in the United States, Brazil, and Greece. Herpetologica 56(3):343–356

    Google Scholar 

  • Turner AH, Pol D, Clarke JA, Erickson GM, Norell MA (2007) A basal dromaeosaurid and size evolution preceding avian flight. Science 317:1378–1381

    Article  PubMed  CAS  Google Scholar 

  • Van Valkenburgh B (1990) Skeletal and dental predictors of body mass in carnivores. In: Damuth J, MacFadden BJ (eds) Body size in mammalian paleobiology. Cambridge University Press, Cambridge, pp 181–205

    Google Scholar 

  • Van Valkenburgh B, Sacco T (2002) Sexual dimorphism, social behaviour, and intrasexual competition in large Pleistocene carnivorans. J Vertebr Paleontol 22(1):164–169

    Article  Google Scholar 

  • Wiig Ø (1985) Multivariate variation in feral American mink (Mustela vison) from Southern Norway. J Zool 206(3):441–452

    Google Scholar 

  • Wiig Ø (1986) Sexual dimorphism in the skull of minks Mustela vison badgers Meles meles and otters Lutra lutra. Zool J Linn Soc 87(2):163–179

    Article  Google Scholar 

  • Wroe S, McHenry C, Thomason J (2005) Bite club: comparative bite force in big biting mammals and the prediction of predatory behaviour in fossil taxa. Proc Roy Soc Lond B Bio 272:619–625

    Article  Google Scholar 

  • Yates AM (2007) Anchisaurus polyzelus (Hitchcock): the smallest known sauropod dinosaur and the evolution of gigantism among sauropodomorph dinosaurs. Postilla 230:1–57

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the unidentified reviewer whose comments have substantially improved the structure and content of this paper. We especially thank Dr. Gareth Dyke and the others involved in the conference organisation of the 56th Symposium of Vertebrate Palaeontology and Comparative Anatomy (Dublin, 2008) for facilitating the experiment. We are grateful to all of the SVPCA attendees for constructive discussion and the 51 individual delegates who contributed their measurements. Additional thanks goes to Beulah Garner for her comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Viscardi.

Additional information

Communicated by T. Bartolomaeus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viscardi, P., Sakamoto, M. & Sigwart, J.D. How long is a piece of Strix? Methods in measuring and measuring the measurers. Zoomorphology 129, 185–194 (2010). https://doi.org/10.1007/s00435-010-0111-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-010-0111-y

Keywords

Navigation