Skip to main content
Log in

A synthetic workflow for coordinated direct observation and genetic tagging applied to a complex host-parasite interaction

  • Short Communication
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

An important aspect influencing host specificity is a parasite’s compatibility, or ability, to infect a potential host. Here, we examine the compatibility between different trematode genotypes of the same species and several host species. To execute this study, we developed a synthetic workflow which combines the use of a fluorescent dye and standard molecular techniques to study host-parasite interactions and host specificity. The utility of the fluorescent dye, BIODIPY® FL C12, was evaluated to label and track larval trematodes during experimental infections using the Cerithidea californica-trematode host-parasite system. Our results showed that low dye concentrations (200 nM) did not significantly affect survival or infectivity of Acanthoparyphium spinulosum and proved to be useful for labeling cercariae. Parasites were genotyped based on sequences from cytochrome oxidase subunit 1 (COI) and the nuclear internal transcribed spacer 1 (ITS1) prior to labeling and experimental infections. Samples with low COI PCR product yield were reamplified using the M13 tails to obtain enough material for sequencing. Three parasite genotypes were recovered and results from experimental infections demonstrated varying levels of host specificity. Of the three host species used (C. californica, Polydora nuchalis, Tagelus californianus), genotype B was unable to infect P. nuchalis. Genotype A individuals were less likely to infect P. nuchalis than the other host species. Additionally, genotype C was unable to infect any host offered in this study. These findings reflect possible suboptimal pairings between parasite genotype and host species. Furthermore, the present study provides procedures that are useful for exploring parasite ecology at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Adamson ML, Caira JN (2011) Evolutionary factors influencing the nature of parasite specificity. Parasitology 109:S85–S95. doi:10.1017/S0031182000085103

    Article  Google Scholar 

  • Agrawal A, Lively CM (2002) Infection genetics : gene-for-gene versus matching- alleles models and all points in between. Evol Ecol Res 24:79–90

    Google Scholar 

  • Bearup AJ (1960) Life history of Acanthoparyphium spinulosum Johnston, 1917 (Trematoda: Echinostomatidae). Aust J Zool 8:217–225

    Article  Google Scholar 

  • Bowles J, McManus DP (1993) Rapid discrimination of Echinococcus species and strains using a polymerase chain reaction-based RFLP method. Mol Biochem Parasitol 57:231–239. doi:10.1016/0166-6851(93)90199-8

    Article  CAS  PubMed  Google Scholar 

  • Combes C (2001) Parasitism: the ecology and evolution of intimate interactions. The University of Chicago Press, Chicago

    Google Scholar 

  • Furlong ST, Thibault KS, Morbelli LM, Quinn JJ, Rogers RA (1995) Uptake and compartmentalization of fluorescent lipid analogs in larval Schistosoma mansoni. J Lipid Res 36:1–12

    CAS  PubMed  Google Scholar 

  • Haldane JB (1949) Disease and Evolution. La Recer Sci 19:1–11

    Google Scholar 

  • Keeney DB, Lagrue C, Bryan-Walker K, Khan N, Leung TLF, Poulin R (2008) The use of fluorescent fatty acid analogs as labels in trematode experimental infections. Exp Parasitol 120:15–20. doi:10.1016/j.exppara.2008.04.010

    Article  CAS  PubMed  Google Scholar 

  • Koprivnikar J, Lim D, Fu C, Brack SHM (2010) Effects of temperature, salinity, and pH on the survival and activity of marine cercariae. Parasitol Res 106:1167–1177. doi:10.1007/s00436-010-1779-0

    Article  PubMed  Google Scholar 

  • Kuris AM (1990) Guild structure of larval trematodes in molluscan hosts: prevalence, dominance and significance of competition. In: Esch GW, Bush AO, Aho JM (eds) Parasite Communities Patterns Process. Chapman & Hall, London, pp 69–100

    Chapter  Google Scholar 

  • Kuris AM, Goddard JHR, Torchin ME, Murphy N, Gurney R, Lafferty KL (2007) An experimental evaluation of host specificity: the role of encounter and compatibility filters for a rhizocephalan parasite of crabs. Int J Parasitol 37:539–545. doi:10.1016/j.ijpara.2006.12.003

    Article  PubMed  Google Scholar 

  • Kuris AM, Hechinger RF, Shaw JC, Whitney KL, Aguirre-Macedo L, Boch CA, Dobson AP, Dunham EJ, Fredensborg BL, Huspeni TC, Lorda J, Mababa L, Mancini FT, Mora AB, Pickering M, Talhouk NL, Torchin ME, Laftery KD (2008) Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454:515–518. doi:10.1038/nature06970

    Article  CAS  PubMed  Google Scholar 

  • Leung TLF, Poulin R (2010) Infection success of different trematode genotypes in two alternative intermediate hosts: evidence for intraspecific specialization? Parasitology 137:321–328. doi:10.1017/S0031182009991107

    Article  CAS  PubMed  Google Scholar 

  • Leung TLF, Poulin R (2011) Intra-host competition between co-infecting digeneans within a bivalve second intermediate host: dominance by priority-effect or taking advantage of others? Int J Parasitol 41:449–454. doi:10.1016/j.ijpara.2010.11.004

    Article  PubMed  Google Scholar 

  • Little JW (1966) Acanthoparyphium spinulosum (Trematoda: Echinostomatidae) in Oysters at Port Isabel, Texas. J Parasitol 52:663. doi:10.2307/3276424

  • Lymbery AJ (1989) Host specificity, host range and host preference. Parasitol Today 5:298. doi:10.1016/0169-4758(89)90021-5

    Article  CAS  PubMed  Google Scholar 

  • Martin WE (1972) An annotated key to the cercariae that develop in the snail Cerithidea californica. Bull South Calif Acad Sci 71:39–43

    Google Scholar 

  • Martin WE, Adams JE (1961) Life cycle of Acanthoparyphium spinulosum Johnston, 1917 (Echinostomatidae: Trematoda). J Parasitol 47:777–782

    Article  CAS  PubMed  Google Scholar 

  • Moszczynska A, Locke SA, McLaughlin JD, Marcogliese DJ, Crease TJL (2009) Development of primers for the mitochondrial cytochrome c oxidase I gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Mol Ecol Resour 9:75–82. doi:10.1111/j.1755-0998.2009.02634.x

    Article  CAS  PubMed  Google Scholar 

  • Nguyen AT (2012) Genetic diversity and its relationship to host-specificity of a trematode parasite (Acanthoparyphium spinulosum). University of California, Santa Barbara

  • Poulin R, Cribb TH (2002) Trematode life cycles: short is sweet? Trends Parasitol 18:176–183

    Article  PubMed  Google Scholar 

  • Poulin R, Keeney DB (2008) Host specificity under molecular and experimental scrutiny. Trends Parasitol 24:24–28. doi:10.1016/j.pt.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  • Poulin R, Krasnov BR, Mouillot D (2011) Host specificity in phylogenetic and geographic space. Trends Parasitol 27:355–361. doi:10.1016/j.pt.2011.05.003

    Article  PubMed  Google Scholar 

  • Reversat J, Renaud F, Maillard C (1989) Biology of parasite populations: the differential specificity of the genus Helicometra Odhner, 1902 (Trematoda: Opecoelidae) in the Mediterranean Sea demonstrated by enzyme electrophoresis. Int J Parasitol 19:885–890. doi:10.1016/0020-7519(89)90115-X

  • Sapp KK, Loker ES (2000) Mechanisms underlying digenean-snail specificity: role of miracidial attachment and host plasma factors. J Parasitol 86:327–331

    Article  Google Scholar 

  • Zhan A, Bao Z, Hu X, Lu W, Wang S, Peng W, Wang M, Hui M, Hu J (2008) Accurate methods of DNA extraction and PCR-based genotyping for single scallop embryos/larvae long preserved in ethanol. Mol Ecol Resour 8:790–795. doi:10.1111/j.1755-0998.2007.02066.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Seth Judson, Courtney Neumann, and Danielle Zola for their assistance in the laboratory and the field. We thank Todd Oakley for allowing us to use his Olympus BX51 Fluorescence Microscope and Gretchen Hofmann for the use of her laboratory to conduct much of this research.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, A.T., Kuwata, C. & Kuris, A.M. A synthetic workflow for coordinated direct observation and genetic tagging applied to a complex host-parasite interaction. Parasitol Res 114, 2015–2021 (2015). https://doi.org/10.1007/s00436-015-4437-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4437-8

Keywords

Navigation