Skip to main content
Log in

Modulation of aberrant splicing in human RNA diseases by chemical compounds

  • Review
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Pre-mRNA splicing is an essential step for gene expression in higher eukaryotes. Alternative splicing contributes to diversity of the expressed proteins from the limited number of genes. Disruption of splicing regulation often results in hereditary and sporadic diseases called as ‘RNA diseases’. Modulation of splicing by small chemical compounds and nucleic acids has been tried to target aberrant splicing in those diseases. Several RNA diseases and splicing-target therapeutic approaches will be briefly introduced in this review. Accumulating knowledge about molecular mechanism of aberrant splicing and their correction by chemical compounds is important not only for RNA biologists, but also for clinicians who desire therapies for those diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aartsma-Rus A, Krieg AM (2017) FDA approves eteplirsen for duchenne muscular dystrophy: the next chapter in the eteplirsen saga. Nucleic Acid Ther 27:1–3. doi:10.1089/nat.2016.0657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson SL, Coli R, Daly IW, Kichula EA, Rork MJ, Volpi SA, Ekstein J, Rubin BY (2001) Familial dysautonomia is caused by mutations of the IKAP gene. Am J Hum Genet 68:753–758. doi:10.1086/318808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson SL, Qiu J, Rubin BY (2003a) EGCG corrects aberrant splicing of IKAP mRNA in cells from patients with familial dysautonomia. Biochem Biophys Res Commun 310:627–633

    Article  CAS  PubMed  Google Scholar 

  • Anderson SL, Qiu J, Rubin BY (2003b) Tocotrienols induce IKBKAP expression: a possible therapy for familial dysautonomia. Biochem Biophys Res Commun 306:303–309

    Article  CAS  PubMed  Google Scholar 

  • Andreassi C, Jarecki J, Zhou J, Coovert DD, Monani UR, Chen X, Whitney M, Pollok B, Zhang M, Androphy E, Burghes AH (2001) Aclarubicin treatment restores SMN levels to cells derived from type I spinal muscular atrophy patients. Hum Mol Genet 10:2841–2849

    Article  CAS  PubMed  Google Scholar 

  • Axelrod FB, Liebes L, Gold-Von Simson G, Mendoza S, Mull J, Leyne M, Norcliffe-Kaufmann L, Kaufmann H, Slaugenhaupt SA (2011) Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia. Pediatr Res 70:480–483. doi:10.1203/PDR.0b013e31822e1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bochner R, Ziv Y, Zeevi D, Donyo M, Abraham L, Ashery-Padan R, Ast G (2013) Phosphatidylserine increases IKBKAP levels in a humanized knock-in IKBKAP mouse model. Hum Mol Genet 22:2785–2794. doi:10.1093/hmg/ddt126

    Article  CAS  PubMed  Google Scholar 

  • Bordet T, Buisson B, Michaud M, Drouot C, Galea P, Delaage P, Akentieva NP, Evers AS, Covey DF, Ostuni MA, Lacapere JJ, Massaad C, Schumacher M, Steidl EM, Maux D, Delaage M, Henderson CE, Pruss RM (2007) Identification and characterization of cholest-4-en-3-one, oxime (TRO19622), a novel drug candidate for amyotrophic lateral sclerosis. J Pharmacol Exp Ther 322:709–720. doi:10.1124/jpet.107.123000

    Article  CAS  PubMed  Google Scholar 

  • Cartegni L, Krainer AR (2002) Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet 30:377–384. doi:10.1038/ng854

    Article  CAS  PubMed  Google Scholar 

  • Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3:285–298. doi:10.1038/nrg775

    Article  CAS  PubMed  Google Scholar 

  • Cazzola M, Della Porta MG, Malcovati L (2013) The genetic basis of myelodysplasia and its clinical relevance. Blood 122:4021–4034. doi:10.1182/blood-2013-09-381665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang JG, Hsieh-Li HM, Jong YJ, Wang NM, Tsai CH, Li H (2001) Treatment of spinal muscular atrophy by sodium butyrate. Proc Natl Acad Sci USA 98:9808–9813. doi:10.1073/pnas.171105098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corrionero A, Minana B, Valcarcel J (2011) Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev 25:445–459. doi:10.1101/gad.2014311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuajungco MP, Leyne M, Mull J, Gill SP, Lu W, Zagzag D, Axelrod FB, Maayan C, Gusella JF, Slaugenhaupt SA (2003) Tissue-specific reduction in splicing efficiency of IKBKAP due to the major mutation associated with familial dysautonomia. Am J Hum Genet 72:749–758. doi:10.1086/368263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darman RB, Seiler M, Agrawal AA, Lim KH, Peng S, Aird D, Bailey SL, Bhavsar EB, Chan B, Colla S, Corson L, Feala J, Fekkes P, Ichikawa K, Keaney GF, Lee L, Kumar P, Kunii K, MacKenzie C, Matijevic M, Mizui Y, Myint K, Park ES, Puyang X, Selvaraj A, Thomas MP, Tsai J, Wang JY, Warmuth M, Yang H, Zhu P, Garcia-Manero G, Furman RR, Yu L, Smith PG, Buonamici S (2015) Cancer-associated SF3B1 hotspot mutations induce cryptic 3′ splice site selection through use of a different branch point. Cell Rep 13:1033–1045. doi:10.1016/j.celrep.2015.09.053

    Article  CAS  PubMed  Google Scholar 

  • De Conti L, Baralle M, Buratti E (2013) Exon and intron definition in pre-mRNA splicing. Wiley Interdiscip Rev RNA 4:49–60. doi:10.1002/wrna.1140

    Article  PubMed  Google Scholar 

  • DeBoever C, Ghia EM, Shepard PJ, Rassenti L, Barrett CL, Jepsen K, Jamieson CH, Carson D, Kipps TJ, Frazer KA (2015) Transcriptome sequencing reveals potential mechanism of cryptic 3′ splice site selection in SF3B1-mutated cancers. PLoS Comput Biol 11:e1004105. doi:10.1371/journal.pcbi.1004105

    Article  PubMed  PubMed Central  Google Scholar 

  • Dvinge H, Kim E, Abdel-Wahab O, Bradley RK (2016) RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Cancer 16:413–430. doi:10.1038/nrc.2016.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eskens FA, Ramos FJ, Burger H, O’Brien JP, Piera A, de Jonge MJ, Mizui Y, Wiemer EA, Carreras MJ, Baselga J, Tabernero J (2013) Phase I pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin Cancer Res 19:6296–6304. doi:10.1158/1078-0432.CCR-13-0485

    Article  CAS  PubMed  Google Scholar 

  • Fairclough RJ, Wood MJ, Davies KE (2013) Therapy for Duchenne muscular dystrophy: renewed optimism from genetic approaches. Nat Rev Genet 14:373–378. doi:10.1038/nrg3460

    Article  CAS  PubMed  Google Scholar 

  • Fan L, Lagisetti C, Edwards CC, Webb TR, Potter PM (2011) Sudemycins, novel small molecule analogues of FR901464, induce alternative gene splicing. ACS Chem Biol 6:582–589. doi:10.1021/cb100356k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folco EG, Coil KE, Reed R (2011) The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point-binding region. Genes Dev 25:440–444. doi:10.1101/gad.2009411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu XD, Ares M Jr (2014) Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet 15:689–701. doi:10.1038/nrg3778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geuens T, Bouhy D, Timmerman V (2016) The hnRNP family: insights into their role in health and disease. Hum Genet 135:851–867. doi:10.1007/s00439-016-1683-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa M, Miura T, Kuzuya K, Inoue A, Won Ki S, Horinouchi S, Yoshida T, Kunoh T, Koseki K, Mino K, Sasaki R, Yoshida M, Mizukami T (2011) Identification of SAP155 as the target of GEX1A (Herboxidiene), an antitumor natural product. ACS Chem Biol 6:229–233. doi:10.1021/cb100248e

    Article  CAS  PubMed  Google Scholar 

  • Hastings ML, Berniac J, Liu YH, Abato P, Jodelka FM, Barthel L, Kumar S, Dudley C, Nelson M, Larson K, Edmonds J, Bowser T, Draper M, Higgins P, Krainer AR (2009) Tetracyclines that promote SMN2 exon 7 splicing as therapeutics for spinal muscular atrophy. Sci Transl Med 1:5ra12. doi:10.1126/scitranslmed.3000208

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Article  CAS  PubMed  Google Scholar 

  • Hong DS, Kurzrock R, Naing A, Wheler JJ, Falchook GS, Schiffman JS, Faulkner N, Pilat MJ, O’Brien J, LoRusso P (2014) A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) splicesome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Invest New Drugs 32:436–444. doi:10.1007/s10637-013-0046-5

    Article  CAS  PubMed  Google Scholar 

  • Howard JM, Sanford JR (2015) The RNAissance family: SR proteins as multifaceted regulators of gene expression. Wiley Interdiscip Rev RNA 6:93–110. doi:10.1002/wrna.1260

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim EC, Hims MM, Shomron N, Burge CB, Slaugenhaupt SA, Reed R (2007) Weak definition of IKBKAP exon 20 leads to aberrant splicing in familial dysautonomia. Hum Mutat 28:41–53. doi:10.1002/humu.20401

    Article  CAS  PubMed  Google Scholar 

  • Kaida D, Motoyoshi H, Tashiro E, Nojima T, Hagiwara M, Ishigami K, Watanabe H, Kitahara T, Yoshida T, Nakajima H, Tani T, Horinouchi S, Yoshida M (2007) Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol 3:576–583. doi:10.1038/nchembio.2007.18

    Article  CAS  PubMed  Google Scholar 

  • Kashima T, Manley JL (2003) A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet 34:460–463. doi:10.1038/ng1207

    Article  CAS  PubMed  Google Scholar 

  • Kendall GC, Mokhonova EI, Moran M, Sejbuk NE, Wang DW, Silva O, Wang RT, Martinez L, Lu QL, Damoiseaux R, Spencer MJ, Nelson SF, Miceli MC (2012) Dantrolene enhances antisense-mediated exon skipping in human and mouse models of Duchenne muscular dystrophy. Sci Transl Med 4:164ra160. doi:10.1126/scitranslmed.3005054

    Article  PubMed  Google Scholar 

  • Keren H, Donyo M, Zeevi D, Maayan C, Pupko T, Ast G (2010) Phosphatidylserine increases IKBKAP levels in familial dysautonomia cells. PLoS ONE 5:e15884. doi:10.1371/journal.pone.0015884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kole R, Krieg AM (2015) Exon skipping therapy for Duchenne muscular dystrophy. Adv Drug Deliv Rev 87:104–107. doi:10.1016/j.addr.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  • Kotake Y, Sagane K, Owa T, Mimori-Kiyosue Y, Shimizu H, Uesugi M, Ishihama Y, Iwata M, Mizui Y (2007) Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol 3:570–575. doi:10.1038/nchembio.2007.16

    Article  CAS  PubMed  Google Scholar 

  • Krawczak M, Reiss J, Cooper DN (1992) The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet 90:41–54

    Article  CAS  PubMed  Google Scholar 

  • Kuroyanagi H, Kobayashi T, Mitani S, Hagiwara M (2006) Transgenic alternative-splicing reporters reveal tissue-specific expression profiles and regulation mechanisms in vivo. Nat Methods 3:909–915. doi:10.1038/nmeth944

    Article  CAS  PubMed  Google Scholar 

  • Kuroyanagi H, Ohno G, Sakane H, Maruoka H, Hagiwara M (2010) Visualization and genetic analysis of alternative splicing regulation in vivo using fluorescence reporters in transgenic Caenorhabditis elegans. Nat Protoc 5:1495–1517. doi:10.1038/nprot.2010.107

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Rio DC (2015) Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem 84:291–323. doi:10.1146/annurev-biochem-060614-034316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SC, Dvinge H, Kim E, Cho H, Micol JB, Chung YR, Durham BH, Yoshimi A, Kim YJ, Thomas M, Lobry C, Chen CW, Pastore A, Taylor J, Wang X, Krivtsov A, Armstrong SA, Palacino J, Buonamici S, Smith PG, Bradley RK, Abdel-Wahab O (2016) Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat Med 22:672–678. doi:10.1038/nm.4097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165

    Article  CAS  PubMed  Google Scholar 

  • Lunn MR, Wang CH (2008) Spinal muscular atrophy. Lancet 371:2120–2133. doi:10.1016/S0140-6736(08)60921-6

    Article  PubMed  Google Scholar 

  • Manley JL, Krainer AR (2010) A rational nomenclature for serine/arginine-rich protein splicing factors (SR proteins). Genes Dev 24:1073–1074. doi:10.1101/gad.1934910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuo M, Takeshima Y, Nishio H (2016) Contributions of Japanese patients to development of antisense therapy for DMD. Brain Dev 38:4–9. doi:10.1016/j.braindev.2015.05.014

    Article  PubMed  Google Scholar 

  • Muraki M, Ohkawara B, Hosoya T, Onogi H, Koizumi J, Koizumi T, Sumi K, Yomoda J, Murray MV, Kimura H, Furuichi K, Shibuya H, Krainer AR, Suzuki M, Hagiwara M (2004) Manipulation of alternative splicing by a newly developed inhibitor of Clks. J Biol Chem 279:24246–24254. doi:10.1074/jbc.M314298200

    Article  CAS  PubMed  Google Scholar 

  • Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–463. doi:10.1038/nature08909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida A, Kataoka N, Takeshima Y, Yagi M, Awano H, Ota M, Itoh K, Hagiwara M, Matsuo M (2011) Chemical treatment enhances skipping of a mutated exon in the dystrophin gene. Nat Commun 2:308. doi:10.1038/ncomms1306

    Article  PubMed  PubMed Central  Google Scholar 

  • Palacino J, Swalley SE, Song C, Cheung AK, Shu L, Zhang X, Van Hoosear M, Shin Y, Chin DN, Keller CG, Beibel M, Renaud NA, Smith TM, Salcius M, Shi X, Hild M, Servais R, Jain M, Deng L, Bullock C, McLellan M, Schuierer S, Murphy L, Blommers MJ, Blaustein C, Berenshteyn F, Lacoste A, Thomas JR, Roma G, Michaud GA, Tseng BS, Porter JA, Myer VE, Tallarico JA, Hamann LG, Curtis D, Fishman MC, Dietrich WF, Dales NA, Sivasankaran R (2015) SMN2 splice modulators enhance U1–pre-mRNA association and rescue SMA mice. Nat Chem Biol 11:511–517. doi:10.1038/nchembio.1837

    Article  CAS  PubMed  Google Scholar 

  • Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415. doi:10.1038/ng.259

    Article  CAS  PubMed  Google Scholar 

  • Rigo F, Chun SJ, Norris DA, Hung G, Lee S, Matson J, Fey RA, Gaus H, Hua Y, Grundy JS, Krainer AR, Henry SP, Bennett CF (2014) Pharmacology of a central nervous system delivered 2′-O-methoxyethyl-modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates. J Pharmacol Exp Ther 350:46–55. doi:10.1124/jpet.113.212407

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson-Hamm JN, Gersbach CA (2016) Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy. Hum Genet 135:1029–1040. doi:10.1007/s00439-016-1725-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sealy L, Chalkley R (1978) The effect of sodium butyrate on histone modification. Cell 14:115–121

    Article  CAS  PubMed  Google Scholar 

  • Seo J, Howell MD, Singh NN, Singh RN (2013) Spinal muscular atrophy: an update on therapeutic progress. Biochim Biophys Acta 1832:2180–2190. doi:10.1016/j.bbadis.2013.08.005

    Article  CAS  PubMed  Google Scholar 

  • Shirai CL, White BS, Tripathi M, Tapia R, Ley JN, Ndonwi M, Kim S, Shao J, Carver A, Saez B, Fulton RS, Fronick C, O’Laughlin M, Lagisetti C, Webb TR, Graubert TA, Walter MJ (2017) Mutant U2AF1-expressing cells are sensitive to pharmacological modulation of the spliceosome. Nat Commun 8:14060. doi:10.1038/ncomms14060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh NK, Singh NN, Androphy EJ, Singh RN (2006) Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 26:1333–1346. doi:10.1128/MCB.26.4.1333-1346.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slaugenhaupt SA, Blumenfeld A, Gill SP, Leyne M, Mull J, Cuajungco MP, Liebert CB, Chadwick B, Idelson M, Reznik L, Robbins C, Makalowska I, Brownstein M, Krappmann D, Scheidereit C, Maayan C, Axelrod FB, Gusella JF (2001) Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 68:598–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slaugenhaupt SA, Mull J, Leyne M, Cuajungco MP, Gill SP, Hims MM, Quintero F, Axelrod FB, Gusella JF (2004) Rescue of a human mRNA splicing defect by the plant cytokinin kinetin. Hum Mol Genet 13:429–436. doi:10.1093/hmg/ddh046

    Article  CAS  PubMed  Google Scholar 

  • Stein CA (2016) Eteplirsen approved for duchenne muscular dystrophy: the FDA faces a difficult choice. Mol Ther 24:1884–1885. doi:10.1038/mt.2016.188

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi A, Hosokawa M, Nojima T, Hagiwara M (2010) Splicing reporter mice revealed the evolutionally conserved switching mechanism of tissue-specific alternative exon selection. PLoS ONE 5:e10946. doi:10.1371/journal.pone.0010946

    Article  PubMed  PubMed Central  Google Scholar 

  • Wahl MC, Will CL, Luhrmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136:701–718. doi:10.1016/j.cell.2009.02.009

    Article  CAS  PubMed  Google Scholar 

  • Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476. doi:10.1038/nature07509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Will CL, Urlaub H, Achsel T, Gentzel M, Wilm M, Luhrmann R (2002) Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein. EMBO J 21:4978–4988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witten JT, Ule J (2011) Understanding splicing regulation through RNA splicing maps. Trends Genet 27:89–97. doi:10.1016/j.tig.2010.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, Sato Y, Sato-Otsubo A, Kon A, Nagasaki M, Chalkidis G, Suzuki Y, Shiosaka M, Kawahata R, Yamaguchi T, Otsu M, Obara N, Sakata-Yanagimoto M, Ishiyama K, Mori H, Nolte F, Hofmann WK, Miyawaki S, Sugano S, Haferlach C, Koeffler HP, Shih LY, Haferlach T, Chiba S, Nakauchi H, Miyano S, Ogawa S (2011) Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478:64–69. doi:10.1038/nature10496

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Kataoka N, Miyauchi K, Ohe K, Iida K, Yoshida S, Nojima T, Okuno Y, Onogi H, Usui T, Takeuchi A, Hosoya T, Suzuki T, Hagiwara M (2015) Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia. Proc Natl Acad Sci USA 112:2764–2769. doi:10.1073/pnas.1415525112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanetta C, Nizzardo M, Simone C, Monguzzi E, Bresolin N, Comi GP, Corti S (2014) Molecular therapeutic strategies for spinal muscular atrophies: current and future clinical trials. Clin Ther 36:128–140. doi:10.1016/j.clinthera.2013.11.006

    Article  PubMed  Google Scholar 

  • Zhu J, Mayeda A, Krainer AR (2001) Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins. Mol Cell 8:1351–1361

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Zhang Y, Zhang W, Yang S, Chen JQ, Tian D (2009) Patterns of exon-intron architecture variation of genes in eukaryotic genomes. BMC Genomics 10:47. doi:10.1186/1471-2164-10-47

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank the people in Dr. Shin-Ichiro Takahashi lab for helpful discussion and comments. This work was supported by Grants-in-Aid for Scientific Research (Grant No. 23112706) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. I apologize to all scientists whose research could not be properly discussed and cited in this review owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoyuki Kataoka.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kataoka, N. Modulation of aberrant splicing in human RNA diseases by chemical compounds. Hum Genet 136, 1237–1245 (2017). https://doi.org/10.1007/s00439-017-1789-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-017-1789-4

Keywords

Navigation