Skip to main content

Advertisement

Log in

Autoradiography techniques and quantification of drug distribution

  • Review
  • Published:
Cell and Tissue Research Aims and scope

Abstract

The use of radiolabeled drug compounds offers the most efficient way to quantify the amount of drug and/or drug-derived metabolites in biological samples. Autoradiography is a technique using X- ray film, phosphor imaging plates, beta imaging systems, or photo-nuclear emulsion to visualize molecules or fragments of molecules that have been radioactively labeled, and it has been used to quantify and localize drugs in tissues and cells for decades. Quantitative whole-body autoradiography or autoradioluminography (QWBA) using phosphor imaging technology has revolutionized the conduct of drug distribution studies by providing high resolution images of the spatial distribution and matching tissue concentrations of drug-related radioactivity throughout the body of laboratory animals. This provides tissue-specific pharmacokinetic (PK) compartmental analysis which has been useful in toxicology, pharmacology, and drug disposition/patterns, and to predict human exposure to drugs and metabolites, and also radioactivity, when a human radiolabeled drug study is necessary. Microautoradiography (MARG) is another autoradiographic technique that qualitatively resolves the localization of radiolabeled compounds to the cellular level in a histological preparation. There are several examples in the literature of investigators attempting to obtain drug concentration data from MARG samples; however, there are technical issues which make that problematic. These issues will be discussed. This review will present a synopsis of both techniques and examples of how they have been used for drug research in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Appleton TC (1964) Autoradiography of soluble labeled compounds. J R Microsc Soc 83:277–281

    Article  CAS  PubMed  Google Scholar 

  • Baker JRJ (1989) Autoradiography: A Comprehensive Review. Royal Microscopical Society, Microscopy Handbooks 18. Oxford University Press, p 30–32

  • Blackett NM, Parry DM (1973) A new methodfor analyzing electron microscope autoradiographs using hypothetical grain distributions. J Cell Biol 57:9–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown LA (2013) Pharmacology/Toxicology Primary Discipline Review; Subject: STN 125466/0 - Novo Nordisk;s Original Biological License Application (BLA) NovoEight®, Antihemophilic Factor (Recombinant) Plasma/albumin Free beta (β)-domain deleted (BDD); FDA File (original BLA STN 125466/0

  • Charpak G, Imrie D, Jeanjean J, Miné P, Nguyen H, Scigocki D, Tavernier SPK, Wells K (1989) A new approach to positron emission tomography. Eur J Nucl Med 15:690–693

    Article  CAS  PubMed  Google Scholar 

  • Christensen J, Litherland K, Faller T, van de Kerkhof NF, Hunziker J, Krauser J, Swart P (2013) Metabolism studies of unformulated internally [3H]-labeled short interfering RNAs in mice. Drug Metab Dispos 41(6):1211–1219

    Article  CAS  PubMed  Google Scholar 

  • Ciprotti M, Chong G, Gan HK, Chan A, Murone C, MacGregor D, Lee F-T, Johns TG, Heath JK, Ernst M, Burgess AW, Scott AM (2014) Quantitative intratumoural microdistribution and kinetics of 131I-huA33 antibody in patients with colorectal carcinoma. EJNMMI Res 4:22

    Article  PubMed Central  PubMed  Google Scholar 

  • Coe RAJ (1982) An evaluation of X-ray films suitable for autoradiographs using ß14C radiation. Int J Appl Radiat Isot 36:93–96

    Google Scholar 

  • Cross SAM, Groves AD, Hesselbo T (1974) A quantitative method for measuring radioactivity in tissues sectioned for whole body radiography. Int J Appl Radiat Isot 25:381–386

    Article  CAS  PubMed  Google Scholar 

  • Dain JD, Collins JM, Robinson WT (1994) A regulatory and industrial perspective of the use of carbon-14 and tritium isotopes in human ADME studies. Pharm Res 11(6):925–928

    Article  CAS  PubMed  Google Scholar 

  • Davenport L (2013) Teriflunomide: no effects on sperm. Poster at 29th Congress of European Committee for Treatment and Research in Multiple Sclerosis October 2–3, 2013, Copenhagen, Denmark

  • Downs AM, Williams MA (1984) An improved approach to the analysis of autoradiographs containing isolated sources of simple shape: method, theoretical basis and reference data. J Microsc 114:143–156

    Article  Google Scholar 

  • Flitney FW (1969) Tritium-labelled Araldite as an internal standard for quantitative autoradiography using the electron microscope. J Microsc 90(2):151–156

    Article  CAS  PubMed  Google Scholar 

  • Franklin ER (1985) The use of measurements of radiographic film response of X-ray film in quantitative and semi-quantitative autoradiography. Int J Appl Radiat Isot 36:193–196

    Article  CAS  PubMed  Google Scholar 

  • Gross S, Piwnica-Worms D (2006) Molecular imaging strategies for drug discovery and development. Curr Opinions Chem Biol 10(4):33442

    Google Scholar 

  • Haglund J, Borg N (2013) ADME characterization in rtas revealed immediate secretion of AZD7903 into the stomach after IV dosing. Xenobiotica 43(9):823–835

    Article  CAS  PubMed  Google Scholar 

  • Hall H, Velikyan I, Blom E, Ulin J, Monazzam A, Påhlman L, Micke P, Wanders A, McBride W, Goldenberg DM, Långström B (2012) In vitro autoradiography of carcinoembryonic antigen in tissue from patients with colorectal cancer using multifunctional antibody TF2 and 67/68Ga-labeled haptens by pretargeting. Am J Nucl Med Mol Imaging 2(2):141–150

    PubMed Central  CAS  PubMed  Google Scholar 

  • Héroult M, Steinke W, Frisk A-L, Borkowski S, Meyer K, Petrul H, Heisler I, Quanz M, Neuhaus, Buchmann B, Miller T, Bauser M, Hägenbarth A, Brands M, Ziegelbauer K (2014) Effects of selective and broad glucose transporter inhibition on glucose distribution in tumor-bearing mice. Poster at Annual Meeting of the American Association for Cancer Research, San Diego

    Google Scholar 

  • Herzog E, Harris S, McEwen A, Henson C, Pragst I, Dickneite SS, Zollner S (2014) Recombinant fusion protein linking factor VIIa with albumin (rVII-FP): tissue distribution in rats. Thromb Res 134(2):495–502. doi:10.1016/j.thrombres.2014.05.031

    Article  CAS  PubMed  Google Scholar 

  • Hesk D, Koharski D, Saluja S (1997) In: Synthesis and applications of isotopically labeled compounds. Wiley, New York

  • Jeavons AP, Hood K, Herlin O (1983) The high density avalanche chamber for positron emission tomography. IEEE Transcripts Nucl Sci 30:640–645

    Article  Google Scholar 

  • Kim H, Prelusky D, Wang L, Hesk D, Palamanda J, Nomeir A (2002) The importance of radiochemical analysis of biological fluids before and after lyophilization from animals dosed with [3H]-labeled compounds in drug discovery. Am Pharm Rev 7:44–48

    Google Scholar 

  • Kolbe H, Dietzel G (2000) Technical validation of radioluminography systems. J Regul Toxicol Pharmacol 31(2):S5–S14

    Article  CAS  Google Scholar 

  • Kolkhof P, Delbeck M, Kretschmer A, Steinke W, Hartmann E, Bärfacker L, Eitner F, Albrecht-Küpper B, Schäfer S (2014) Finerenone, a novel selective nonsteriodal mineralocortoid receptor antagonist protects from rat cardiorenal injury. J Cardiovasc Pharmacol 64(1):69–78

    Article  CAS  PubMed  Google Scholar 

  • Kravitz E, Gaisler-Salomon I, Biegon A (2013) Hippocampal glutamate NMDA receptor loss tracks progression in Alzheimer’s disease: quantitative autoradiography in postmortem human brain. PLoS ONE 8(11):e81244

    Article  PubMed Central  PubMed  Google Scholar 

  • Lacassagne A, Lattes J (1924) R’éparitiondu polonium (injecté sous la peau) dans l’organisme de rats porteurs de griffes cancereuses. C R Séance Soc Biol 90:352–353

    CAS  Google Scholar 

  • LeBlanc B, Jezequel S, Davies T, Hanton G, Taradach C (1998) Binding of drugs to eye melanin is not predictive of ocular toxicity. Regul Toxicol Pharmacol 28:124–132

    Article  CAS  PubMed  Google Scholar 

  • Liquier-Milward J (1956) Electron microscopy and radioautography as coupled techniques in tracer experiments. Nature 177:619

    Article  CAS  PubMed  Google Scholar 

  • Longshaw S, Fowler JSL (1978) A poly (methy l4C) methacrylate source for use in whole-body autoradiography and beta-radiography. Xenobiotica 8:289–295

    Article  CAS  PubMed  Google Scholar 

  • Luckey G (1975) US Patent 3:859,527

    Google Scholar 

  • Märs U, d’Argy R, Hallbeck K, Miller-Larsson A, Edsbäcker S (2013) Tissue accumulation kinetics of ciclesonide-active metabolite and budesonide in mice. Basic Clin Pharmacol Toxicol 112(6):401–411

    Article  PubMed  Google Scholar 

  • Metaxas A, Willems R, Kooijman EJM, Renjaän VA, Klein PJ, Windhorst AD, Ver Donck L, Leysen JE, van Berckel BNM (2014) Subchronic treatment with phencyclidine in adolescence leads to impaired exploratory behavior in adult rats without altering social interaction or N-Methyl-D-aspartate receptor binding levels. J Neurosci Res. doi:10.1002/jnr.23433

    PubMed  Google Scholar 

  • Mizoguchi K, Kanno H, Ikarashi Y, Kase Y (2014) Specific binding and characteristics of 18b-Glycyrrhetinic. Acid in rat brain. PLoS ONE 9(4):e95760

    Article  PubMed Central  PubMed  Google Scholar 

  • Morris ED, Yoder KK, Wang C, Normandin MD, Zheng QH, Mock B, Muzic RF Jr, Froehlich JC (2005) ntPET: a new application of PET imaging for characterizing the kinetics of endogenous neurotransmitter release. Mol Imaging 4(4):473–489

    PubMed  Google Scholar 

  • Motie M, Schaul KW, Potempa LA (1998) Biodistribution and clearance of 125I-labeled C-reactive protein and 125I-labeled modified C-reactive protein in CD-1 mice. Drug Metab Dispos 26(10):977–981

    CAS  PubMed  Google Scholar 

  • Nakatomi Y, Tsuji M, Nakashima T, Gokudan S, Miyazaki H, Tomokiyo K, Ogata Y, Harano S, Matsui H, Shigaki T, Nakamura T, Mogi M (2012) Pharmacokinetics, distribution, and excretion of 125I-labeled human plasma-derived-FVIIa and -FX with MC710 (FVIIa/FX mixture) in rats. Thromb Res 129:62–67

    Article  CAS  PubMed  Google Scholar 

  • Paudyal R, Ewing JR, Nagaraja TN, Bagher-Ebadian H, Knight RA, Panda S, Lu M, Ledbetter K, Fenstermacher JD (2011) The concerdance of MRI and quantitative autoradiography estimates of the trasnvascular transfer rate constant of albumin in a rat brain tumor model. Magn Reson Med 66(5):1422–1431

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramsden D, Tweedie DJ, St George R, Chen L-Z, Li Y (2013) Generating an in-vitro-in vivo correlation for metabolism and liver enrishment of a hepatitis C Virus drug, Faldaprevir, using a rat hepatocyte mode (HepatoPac). Drug Metab Dispos 42(3):407–414

    Article  PubMed  Google Scholar 

  • Rind HB, Butowt R, von Bartheld CS (2005) Synpatic targeting of retrogradely transported trophic factors in motorneurons: comaprison of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, and cardiotrohon-1 with tetanus toxin. J Neurosci 25(3):539–549

    Article  CAS  PubMed  Google Scholar 

  • Robbie SJ, Lundh von Leithner P, Ju M, Lange C, King AG, Adamson P, Lee D, Sychterz C, Coffey P, Ng Y-S, Bainbridge JW, Skima DT (2013) Assessing a novel depot delivery strategy for non-invasive administrationof VEGF/PDGF RTK inhibitors for ocular neovascular disease. Investig Ophthalmol Vis Sci 54(2):1490–1500. doi:10.1167/iovs. 12-10169

    Article  Google Scholar 

  • Salpeter MM, Bachmann L, Salpeter EE (1969) Resolution in electron microscope radioautography. J Cell Biol 41:1–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Solon E (2007) Autoradiography: high-resolution molecular imaging in pharmaceutical discovery and development. Expert Opin Drug Discov 2(4):503–514

    Article  CAS  PubMed  Google Scholar 

  • Solon EG (2012) Use of radioactive compounds and autoradiography to determine drug tissue distribution. Chem Res Toxicol. doi:10.1021/tx200509f

    PubMed  Google Scholar 

  • Solon EG, Kraus L (2002) Quantitative whole-body autoradiography in the pharmaceutical industry. Survey results on study design, methods and regulatory compliance. J Pharmacol Toxicol Methods 43:73–81

    Google Scholar 

  • Solon E, Lee F (2002) Methods determining phosphor imaging limits of quantitation in whole-body autoradiography rodent tissue distribution studies affect predictions of 14C human dosimetry. J Pharmacol Toxicol Methods 46:83–91

    Article  Google Scholar 

  • Solon EG, Schweitzer A, Stoeckli M, Prideaux B (2010) Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. AAPS J 12(1):11–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Solon E, Lordi A, Lander J, Shen H, (2013) Important considerations for the use of 125I-labeled proteins to examine ADME characteristics of iodinated compounds. 2013 AAPS National Biotechnology Conference. San Diego, CA

  • Stumpf WE (2003) Drug localization in tissues and cells. Library of Congress Control Number 2003105179. IDDC Press

  • Stumpf WE, Roth LJ (1964) Vacuum freeze drying of frozen sections for dry-mounting high resolution autoradiography. Stain Technol 39:219–223

    CAS  PubMed  Google Scholar 

  • Ullberg S (1954) Studies on the distribution and fate of 35S-Labelled benzylpenicillin in the body. Acta Radiol Suppl 118:1–110

    CAS  PubMed  Google Scholar 

  • Ullberg S (1977) The technique of whole-body autoradiography: cryosectioning of large specimens. In: Elvefeldt O (Ed.) Special issue on whole-body autoradiography. Sweden LKB Instr. J. Science Tools, Bromma

  • Venturi S, Venturi M (1999) Iodide, thyroid and stomach carcinogenesis: evolutionary story of a primitive antioxidant? Eur J Endocrinol 140:371–372

    Article  CAS  PubMed  Google Scholar 

  • von Bartheld CS (2001) Tracing with radiolabeled neurotrophins. Methods Mol Biol 169:195–216

    Google Scholar 

  • Walker MD, Goorden MC, Dinelle K, Ramakers RM, Blinder S, Shirmohammad M, van der Have F, Beekman FJ, Sossi V (2014) Performance assessment of a preclinical PET scanner with pinhole collimation by comparison to a coincidence-based small-animal PET scanner. J Nucl Med 55(8):1368–1374. doi:10.2967/jnumed.113.136663

    Article  PubMed  Google Scholar 

  • Wang Y, Zhang Y-L, Hennig K, Gale JP, Hong Y, Cha A, Riley M, Wagner F, Haggarty SJ, Holson E, Hooker J (2013) Class I HDAC imaging using [3H]CI-994 autoradiography. Epigenetics 8(7):756–764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ward PD, La D (2014) Testicular distribution and toxicity of a novel LTA4H inhibitor in rats. Toxicol Appl Pharmacol 278(1):26–30

    Article  CAS  PubMed  Google Scholar 

  • Williams MA (1969) In: Advances in optical and electron microscopy. Barer R, Cosslett VE (eds) Advances in optical and electron microscopy, vol 3. Academic, New York, pp 219–272

  • Woodburn KW, Fong KL, Wilson SD, Sloneker S, Strzmeinski P, SolonE MY, Tagawa Y (2013) Peginesatide clearance, distribution, metabolism, and excretion in monkeys following intravenous administration. Drug Metab Dispos 41(4):774–784

    Article  CAS  PubMed  Google Scholar 

  • Yue Q, Mulder T, Rudewicz PJ, Solon E, Budha N, Ware JA, Lyssikatos J, Hop CE, Wong H, Khojasteh SC (2013) Evaluation of metabolism and disposition of GDC-0152 in rats using 14C labeling strategy at two different positions: a novel formation of hippuric acid from 4-phenyl-5-amino-1,2,3-thiadiazole. Drug Metab Dispos 41(2):508–517

    Article  CAS  PubMed  Google Scholar 

  • Zane PA, Brindle SD, Gause DO, O’Buck AJ, Raghavan PR, Tripp SL (1990) Physicochemical factors associated with binding and retention of compounds in ocular melanin of rats: correlations using data from whole-body autoradiography and molecular modeling for multiple linear regression analyses. Pharmacol Res 7(9):935–941

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric G. Solon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solon, E.G. Autoradiography techniques and quantification of drug distribution. Cell Tissue Res 360, 87–107 (2015). https://doi.org/10.1007/s00441-014-2093-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2093-4

Keywords

Navigation