Skip to main content

Advertisement

Log in

Tree species diversity mitigates disturbance impacts on the forest carbon cycle

  • Highlighted Student Research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Biodiversity fosters the functioning and stability of forest ecosystems and, consequently, the provision of crucial ecosystem services that support human well-being and quality of life. In particular, it has been suggested that tree species diversity buffers ecosystems against the impacts of disturbances, a relationship known as the “insurance hypothesis”. Natural disturbances have increased across Europe in recent decades and climate change is expected to amplify the frequency and severity of disturbance events. In this context, mitigating disturbance impacts and increasing the resilience of forest ecosystems is of growing importance. We have tested how tree species diversity modulates the impact of disturbance on net primary production and the total carbon stored in living biomass for a temperate forest landscape in Central Europe. Using the simulation model iLand to study the effect of different disturbance regimes on landscapes with varying levels of tree species richness, we found that increasing diversity generally reduces the disturbance impact on carbon storage and uptake, but that this effect weakens or even reverses with successional development. Our simulations indicate a clear positive relationship between diversity and resilience, with more diverse systems experiencing lower disturbance-induced variability in their trajectories of ecosystem functioning. We found that positive effects of tree species diversity are mainly driven by an increase in functional diversity and a modulation of traits related to recolonization and resource usage. The results of our study suggest that increasing tree species diversity could mitigate the effects of intensifying disturbance regimes on ecosystem functioning and improve the robustness of forest carbon storage and the role of forests in climate change mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baeten L, Verheyen K, Wirth C et al (2013) A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspect Plant Ecol Evol Syst 15:281–291. doi:10.1016/j.ppees.2013.07.002

    Article  Google Scholar 

  • Bengtsson J, Nilsson SG, Franc A, Menozzi P (2000) Biodiversity, disturbances, ecosystem function and management of European forests. For Ecol Manage 132:39–50

    Article  Google Scholar 

  • Bohn U, Gollub G, Hettwer C et al (2004) Karte der natürlichen vegetation Europe (Map of the natural vegetation of Europe) Maßtab (scale) 1:2500000. Bundesamt für Naturschutz (Federal Agency for Nature), Leipzig

  • Breiman L (2001) Random forests. Machine Learning 45:5–32

    Article  Google Scholar 

  • Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457. doi:10.1126/science.1155458

    Article  CAS  PubMed  Google Scholar 

  • Cardinale BJ, Gross K, Fritschie K et al (2013) Biodiversity simultaneously enhances the production and stability of community biomass, but the effects are independent. Ecology 94:1697–1707

    Article  PubMed  Google Scholar 

  • Cutler DR, Edwards TC, Beard KH et al (2007) Random forests for classification in ecology. Ecology 88:2783–2792

    Article  PubMed  Google Scholar 

  • Déqué M, Somot S, Sanchez-Gomez E et al (2011) The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability. Clim Dyn 38:951–964. doi:10.1007/s00382-011-1053-x

    Article  Google Scholar 

  • Duursma RA, Marshall JD, Robinson AP, Pangle RE (2007) Description and test of a simple process-based model of forest growth for mixed-species stands. Ecol Modell 203:297–311. doi:10.1016/j.ecolmodel.2006.11.032

    Article  Google Scholar 

  • FAO (2007) Food and agriculture organization of the United Nations. State of the world’s forests 2007. Rome, Italy

  • Fernandes PM, Vega JA, Jiménez E, Rigolot E (2008) Fire resistance of European pines. For Ecol Manage 256:246–255. doi:10.1016/j.foreco.2008.04.032

    Article  Google Scholar 

  • Franklin JF, Spies TA, Van Pelt R et al (2002) Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For Ecol Manage 155:399–423

    Article  Google Scholar 

  • Gross K, Cardinale BJ, Fox JW et al (2014) Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments. Am Nat 183:1–12. doi:10.1086/673915

    Article  PubMed  Google Scholar 

  • Güneralp B, Gertner G (2007) Feedback loop dominance analysis of two tree mortality models: relationship between structure and behavior. Tree Physiol 27:269–280

    Article  PubMed  Google Scholar 

  • Holling CS (1996) Engineering resilience versus ecological resilience. Eng Ecol constraints. pp 31–43

  • Hooper DU, Chapin FS III, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Jiang L, Wan S, Li L (2009) Species diversity and productivity: why do results of diversity-manipulation experiments differ from natural patterns? J Ecol 97:603–608. doi:10.1111/j.1365-2745.2009.01503.x

    Article  Google Scholar 

  • Klenner W, Arsenault A, Brockerhoff EG, Vyse A (2009) Biodiversity in forest ecosystems and landscapes: a conference to discuss future directions in biodiversity management for sustainable forestry. For Ecol Manage 258:S1–S4. doi:10.1016/j.foreco.2009.10.037

    Article  Google Scholar 

  • Landsberg JJ, Waring RH (1997) A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manage 95:209–228

    Article  Google Scholar 

  • Lasky JR, Uriarte M, Boukili VK et al (2014) The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol Lett 17(9):1158–1167. doi:10.1111/ele.12322

    Article  PubMed  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by random forest. R News 2:18–22

    Google Scholar 

  • Lischke H, Löffler TJ (2006) Intra-specific density dependence is required to maintain species diversity in spatio-temporal forest simulations with reproduction. Ecol Modell 198:341–361. doi:10.1016/j.ecolmodel.2006.05.005

    Article  Google Scholar 

  • Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76. doi:10.1038/35083573

    Article  CAS  PubMed  Google Scholar 

  • Mitchell SJ (2013) Wind as a natural disturbance agent in forests: a synthesis. Forestry 86:147–157. doi:10.1093/forestry/cps058

    Article  Google Scholar 

  • Mölder A, Bernhardt-Römermann M, Schmidt W (2008) Herb-layer diversity in deciduous forests: raised by tree richness or beaten by beech? For Ecol Manage 256:272–281. doi:10.1016/j.foreco.2008.04.012

    Article  Google Scholar 

  • Morin X, Fahse L, Scherer-Lorenzen M, Bugmann H (2011) Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol Lett 14:1211–1219. doi:10.1111/j.1461-0248.2011.01691.x

    Article  PubMed  Google Scholar 

  • Moser W, Hansen M (2006) The relationship between diversity and productivity in selected forests of the Lake States Region (USA): relative impact of species versus. structural diversity. In: McRoberts RE, Reams GA, Deusen PC Van, McWilliams WH (eds) Proceedings of the 8th annual forest inventory and analysis symposium 2006, U.S. Department of Agriculture, Forest Service, Monterey, California, pp 149–157

  • Nguyen H, Herbohn J, Firn J, Lamb D (2012) Biodiversity–productivity relationships in small-scale mixed-species plantations using native species in Leyte province, Philippines. For Ecol Manage 274:81–90. doi:10.1016/j.foreco.2012.02.022

    Article  Google Scholar 

  • Nitschke CR, Innes JL (2008) A tree and climate assessment tool for modelling ecosystem response to climate change. Ecol Modell 210:263–277. doi:10.1016/j.ecolmodel.2007.07.026

    Article  Google Scholar 

  • Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20:170–180. doi:10.1111/j.1466-8238.2010.00592.x

    Article  Google Scholar 

  • Pasztor F, Matulla C, Rammer W, Lexer MJ (2014) Drivers of the bark beetle disturbance regime in Alpine forests in Austria. For Ecol Manage 318:349–358. doi:10.1016/j.foreco.2014.01.044

    Article  Google Scholar 

  • Potter KM, Woodall CW (2014) Does biodiversity make a difference? Relationships between species richness, evolutionary diversity, and aboveground live tree biomass across U.S. forests. For Ecol Manage 321:117–129. doi:10.1016/j.foreco.2013.06.026

  • R Core Team (2013) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria

  • Sandri M, Zuccolotto P (2006) Variable selection using random forests. In: Zani S, Cerioli A, Riani M, Vichi P (eds) Data analysis classification and the forward search. Springer, Berlin, pp 263–270

    Chapter  Google Scholar 

  • Schelhaas M-J, Nabuurs G-J, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Chang Biol 9:1620–1633. doi:10.1046/j.1365-2486.2003.00684.x

    Article  Google Scholar 

  • Scherer-Lorenzen M (2014) The functional role of biodiversity in the context of global change. In: Coomes D, Burslem D, Simonson W (eds) Forest global change. Cambridge University Press, Cambridge, pp 195–238

    Chapter  Google Scholar 

  • Schmidt I, Leuschner C, Mölder A, Schmidt W (2009) Structure and composition of the seed bank in monospecific and tree species-rich temperate broad-leaved forests. For Ecol Manage 257:695–702. doi:10.1016/j.foreco.2008.09.052

    Article  Google Scholar 

  • Schmidt M, Hanewinkel M, Kändler G et al (2010) An inventory-based approach for modeling single-tree storm damage––experiences with the winter storm of 1999 in southwestern Germany. Can J For Res 40:1636–1652. doi:10.1139/X10-099

    Article  Google Scholar 

  • Seidl R, Schelhaas M-J, Lexer MJ (2011) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Chang Biol 17:2842–2852. doi:10.1111/j.1365-2486.2011.02452.x

    Article  Google Scholar 

  • Seidl R, Rammer W, Scheller RM, Spies TA (2012a) An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecol Modell 231:87–100. doi:10.1016/j.ecolmodel.2012.02.015

    Article  Google Scholar 

  • Seidl R, Spies T, Rammer W et al (2012b) Multi-scale drivers of spatial variation in old-growth forest carbon density disentangled with Lidar and an individual-based landscape model. Ecosystems 15:1321–1335. doi:10.1007/s10021-012-9587-2

  • Seidl R, Rammer W, Blennow K (2014a) Simulating wind disturbance impacts on forest landscapes: tree-level heterogeneity matters. Environ Model Softw 51:1–11. doi:10.1016/j.envsoft.2013.09.018

    Article  Google Scholar 

  • Seidl R, Rammer W, Spies TA (2014b) Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecol Appl. doi:10.1890/14-0255.1

    Google Scholar 

  • Seidl R, Schelhaas M, Rammer W, Verkerk PJ (2014c) Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Chang 4(9):806–810. doi:10.1038/NCLIMATE2318

    Article  CAS  Google Scholar 

  • Shannon C, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Champaign

    Google Scholar 

  • Spiecker H, Hansen J, Klimo E et al (2004) Norway Spruce conversion––options and consequences. EFI Res Rep 18:320

    Google Scholar 

  • Thom D, Seidl R, Steyrer G et al (2013) Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems. For Ecol Manage 307:293–302. doi:10.1016/j.foreco.2013.07.017

    Article  Google Scholar 

  • Thompson JR, Spies TA (2010) Factors associated with crown damage following recurring mixed-severity wildfires and post-fire management in southwestern Oregon. Landsc Ecol 25:775–789. doi:10.1007/s10980-010-9456-3

    Article  Google Scholar 

  • Thompson I, Mackey B, McNulty S, Mosseler A (2009) Forest resilience, biodiversity, and climate change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Technical series no. 43. Secretariat of the Convention on Biological Diversity, Montreal

  • Tilman D (1996) Biodiversity: population versus ecosystem stability. Ecology 77:350–363. doi:10.1038/367363a0

    Article  Google Scholar 

  • Turner MG, Donato DC, Romme WH (2012) Consequences of spatial heterogeneity for ecosystem services in changing forest landscapes: priorities for future research. Landsc Ecol. doi:10.1007/s10980-012-9741-4

    Google Scholar 

  • Vilà M, Inchausti P, Vayreda J et al (2005) Confounding factors in the observational productivity-diversity relationship in forests. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity function. Springer, Berlin, pp 65–86

    Chapter  Google Scholar 

  • Vockenhuber EA, Scherber C, Langenbruch C et al (2011) Tree diversity and environmental context predict herb species richness and cover in Germany’s largest connected deciduous forest. Perspect Plant Ecol Evol Syst 13:111–119

    Article  Google Scholar 

  • Waring RH, Running SW (2007) Forest ecosystems: analysis at multiple scales, 3rd edn. Elsevier/Academic Press, Amsterdam/San Diego

  • White PS, Jentsch A (2001) The search for generality in studies of disturbance and ecosystem dynamics. Ecosystems 62:399–450

    Google Scholar 

  • Wimberly MC, Spies TA, Long CJ, Whitlock C (2000) Simulating historical variability in the amount of old forests in the Oregon coast range. Conserv Biol 14:167–180. doi:10.1046/j.1523-1739.2000.98284.x

    Article  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment : the insurance hypothesis. Proc Natl Acad Sci USA 96:1463–1468. doi:10.1073/pnas.96.4.1463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen HYH, Reich PB (2012) Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J Ecol 100:742–749. doi:10.1111/j.1365-2745.2011.01944.x

    Article  Google Scholar 

Download references

Acknowledgments

This study was conducted under the European Commission collaborative research project FunDivEUROPE (project no. 265171). R. Seidl acknowledges additional support from a European Commission’s Marie Curie Career Integration Grant (PCIG12-GA-2012-334104). We are grateful to S. Kolb for kindly providing soil data, T. Wutzler for sharing yield table data and M. Liebergesell for giving important insights on the potential natural vegetation in Hainich National Park. We also acknowledge M.J. Lexer for fruitful discussion and administrative support, as well as one anonymous Reviewer and the Editor for helpful comments on an earlier version of the manuscript. The computational results presented here have been achieved in part using the Vienna Scientific Cluster (VSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Silva Pedro.

Additional information

Communicated by Tim Seastedt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3905 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva Pedro, M., Rammer, W. & Seidl, R. Tree species diversity mitigates disturbance impacts on the forest carbon cycle. Oecologia 177, 619–630 (2015). https://doi.org/10.1007/s00442-014-3150-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3150-0

Keywords

Navigation