Skip to main content

Advertisement

Log in

Demography, genetics, and decline of a spatially structured population of lekking bird

  • Population ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Understanding the mechanisms underlying population decline is a critical challenge for conservation biologists. Both deterministic (e.g. habitat loss, fragmentation, and Allee effect) and stochastic (i.e. demographic and environmental stochasticity) demographic processes are involved in population decline. Simultaneously, a decrease of population size has far-reaching consequences for genetics of populations by increasing the risk of inbreeding and the strength of genetic drift, which together inevitably results in a loss of genetic diversity and a reduced effective population size (\(N_{{\text{e}}}\)). These genetic factors may retroactively affect vital rates (a phenomenon coined ‘inbreeding depression’), reduce population growth, and accelerate demographic decline. To date, most studies that have examined the demographic and genetic processes driving the decline of wild populations have neglected their spatial structure. In this study, we examined demographic and genetic factors involved in the decline of a spatially structured population of a lekking bird, the western capercaillie (Tetrao urogallus). To address this issue, we collected capture-recapture and genetic data over a 6-years period in the Vosges Mountains (France). Our study showed that the population of T. urogallus experienced a severe decline between 2010 and 2015. We did not detect any Allee effect on survival and recruitment. By contrast, individuals of both sexes dispersed to avoid small subpopulations, thus suggesting a potential behavioral response to a mate finding Allee effect. In parallel to this demographic decline, the population showed low levels of genetic diversity, high inbreeding and low effective population sizes at both subpopulation and population levels. Despite this, we did not detect evidence of inbreeding depression: neither adult survival nor recruitment were affected by individual inbreeding level. Our study underlines the benefit from combining demographic and genetic approaches to investigate processes that are involved in population decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackerman MW, Hand BK, Waples RK, Luikart G, Waples RS, Steele CA, Garner BA, McCane J, Campbell MR (2017) Effective number of breeders from sibship reconstruction: empirical evaluations using hatchery steelhead. Evol Appl 10:146–160

    Article  PubMed  Google Scholar 

  • Alatalo RV, Höglund J, Lundberg A, Sutherland WJ (1992) Evolution of black grouse leks: female preferences benefit males in larger leks. Behav Ecol 3:53–59

    Article  Google Scholar 

  • Armbruster P, Reed DH (2005) Inbreeding depression in benign and stressful environments. Heredity 95:235–242

    Article  CAS  PubMed  Google Scholar 

  • Ballou J, Ralls K (1982) Inbreeding and juvenile mortality in small populations of ungulates: a detailed analysis. Biol Cons 24:239–272

    Article  Google Scholar 

  • Beehler BM, Foster MS (1988) Hotshots, hotspots, and female preference in the organization of lek mating systems. Am Nat 131:203–219

    Article  Google Scholar 

  • Benton TG, Bowler DE (2012) Linking dispersal to spatial dynamics. In: Clobert J, Baguette M, Benton TG, Bullock JM (eds) Dispersal ecology and evolution. Oxford University Press, Oxford, pp 251–265

    Chapter  Google Scholar 

  • Borchers DL, Zucchini W, Fewster RM (1998) Mark-recapture models for line transect surveys. Biometrics 54:1207–1220

    Article  Google Scholar 

  • Botsford LW, Wainwright TC, Smith JT, Mastrup S, Lott DF (1988) Population dynamics of California quail related to meteorological conditions. J Wildl Manag 52:469–477

    Article  Google Scholar 

  • Bradbury JW, Gibson RM (1983) Leks and mate choice. In: Bateson P (ed) Mate choice. Cambridge University Press, Cambridge, pp 109–138

    Google Scholar 

  • Briskie JV, Mackintosh M (2004) Hatching failure increases with severity of population bottlenecks in birds. Proc Natl Acad Sci 101:558–561

    Article  CAS  PubMed  Google Scholar 

  • Brittain S, Böhning D (2009) Estimators in capture–recapture studies with two sources. Adv Stat Anal 93:23–47

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Socio Methods Res 33:261–304

    Article  Google Scholar 

  • Cayuela H, Pradel R, Joly P, Besnard A (2017) Analysing movement behaviour and dynamic space-use strategies among habitats using multi-event capture-recapture modelling. Methods Ecol Evol 8:1124–1132

    Article  Google Scholar 

  • Cayuela H, Rougemont Q, Prunier JG, Moore JS, Clobert J, Besnard A, Bernatchez L (2018) Demographic and genetic approaches to study dispersal in wild animal populations: a methodological review. Mol Ecol 27:3976–4010

    Article  PubMed  Google Scholar 

  • Cayuela H, Pradel R, Joly P, Bonnaire E, Besnard A (2018) Estimating dispersal in spatiotemporally variable environments using multievent capture–recapture modeling. Ecology 99:1150–1163

    Article  PubMed  Google Scholar 

  • Cayuela H, Boualit L, Laporte M, Prunier JG, Foletti F, Clobert J, Jacob G (2019) Kin-dependent dispersal influences relatedness and genetic structuring in a lek system. Oecologia 191:97–112

    Article  PubMed  Google Scholar 

  • Choquet R, Rouan L, Pradel R (2009) Program E-SURGE: a software application for fitting multievent models. In: Thomson DL, Cooch EG, Conroy MJ (eds) Modeling demographic processes in marked populations. Springer, US, pp 845–865

    Chapter  Google Scholar 

  • Clobert J, Le Galliard JF, Cote J, Meylan S, Massot M (2009) Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol Lett 12:197–209

    Article  PubMed  Google Scholar 

  • Coulon A (2010) GENHET: an easy-to-use R function to estimate individual heterozygosity. Mol Ecol Resour 10:167–169

    Article  CAS  PubMed  Google Scholar 

  • Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the Allee effect. Trends Ecol Evol 14:405–410

    Article  CAS  PubMed  Google Scholar 

  • Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260

    Article  PubMed  Google Scholar 

  • Elgar MA, Clode D (2001) Inbreeding and extinction in island populations: a cautionary note. Conserv Biol 15:284–286

    Article  Google Scholar 

  • Engen S, Lande R, Saether BE (2003) Demographic stochasticity and Allee effects in populations with two sexes. Ecology 84:2378–2386

    Article  Google Scholar 

  • Engen S, Lande R, Saether BE (2005) Effective size of a fluctuating age-structured population. Genetics 170:941–954

    Article  PubMed  PubMed Central  Google Scholar 

  • Fox CW, Reed DH (2011) Inbreeding depression increases with environmental stress: an experimental study and meta-analysis. Evolution 65:246–258

    Article  PubMed  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Cons 126:131–140

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gaillard JM, Yoccoz NG (2003) Temporal variation in survival of mammals: a case of environmental canalization? Ecology 84:3294–3306

    Article  Google Scholar 

  • Gascoigne J, Berec L, Gregory S, Courchamp F (2009) Dangerously few liaisons: a review of mate-finding Allee effects. Popul Ecol 51:355–372

    Article  Google Scholar 

  • Gibbs JP (2001) Demography versus habitat fragmentation as determinants of genetic variation in wild populations. Biol Cons 100:15–20

    Article  Google Scholar 

  • Gilpin M (ed) (2012) Metapopulation dynamics: empirical and theoretical investigations. Academic Press, New York

    Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Grosbois V, Gimenez O, Gaillard JM, Pradel R, Barbraud C, Clobert J, Grosbois V, Gimenez O, Gaillard JM, Pradel R, Barbraud C, Clobert J, Møller AP, Weimerskirch H (2008) Assessing the impact of climate variation on survival in vertebrate populations. Biol Rev 83:357–399

    Article  CAS  PubMed  Google Scholar 

  • Grueber CE, Laws RJ, Nakagawa S, Jamieson IG (2010) Inbreeding depression accumulation across life-history stages of the endangered takahe. Conserv Biol 24:1617–1625

    Article  PubMed  Google Scholar 

  • Hanski I, Gilpin ME, McCauley DE (1997) Metapopulation biology, vol 454. Academic press, San Diego

    Google Scholar 

  • Hartl DL, Clark AG (1989) Principles of population genetics, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Hilde CH, Gamelon M, Sæther BE, Gaillard JM, Yoccoz NG, Pélabon C (2020) The demographic buffering hypothesis: evidence and challenges. Trends Ecol Evol 35:523–538

    Article  PubMed  Google Scholar 

  • Hill MF, Hastings A, Botsford LW (2002) The effects of small dispersal rates on extinction times in structured metapopulation models. Am Nat 160:389–402

    Article  PubMed  Google Scholar 

  • Höglund J, Alatalo RV, Lundberg A, RintamÎki PT, Lindell J (1999) Microsatellite markers reveal the potential for kin selection on black grouse leks. Proc R Soc Lond B Biol Sci 266:813–816

    Article  Google Scholar 

  • Höglund J, Piertney SB, Alatalo RV, Lindell J, Lundberg A, Rintamäki PT (2002) Inbreeding depression and male fitness in black grouse. Proc R Soc Lond B Biol Sci 269:711–715

    Article  Google Scholar 

  • Horvitz DG, Thompson DJ (1952) A generalization of sampling without replacement from a finite universe. J Am Stat Assoc 47:663–685

    Article  Google Scholar 

  • Huggins R, Hwang WH (2011) A review of the use of conditional likelihood in capture-recapture experiments. Int Stat Rev 79:385–400

    Article  Google Scholar 

  • Isomursu M, Rätti O, Liukkonen-Anttila T, Helle P (2012) Susceptibility to intestinal parasites and juvenile survival are correlated with multilocus microsatellite heterozygosity in the Capercaillie (Tetrao urogallus). Ornis Fennica 89:109–119

    Google Scholar 

  • IUCN 2018. The IUCN Red List of Threatened Species. Version 2018-1

  • Jaquiéry J, Guillaume F, Perrin N (2009) Predicting the deleterious effects of mutation load in fragmented populations. Conserv Biol 23:207–218

    Article  PubMed  Google Scholar 

  • Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555

    Article  PubMed  Google Scholar 

  • Keller LF (1998) Inbreeding and its fitness effects in an insular population of song sparrows (Melospiza melodia). Evolution 52:240–250

    PubMed  Google Scholar 

  • Kendall WL, Pollock KH, Brownie C (1995) A likelihood-based approach to capture-recapture estimation of demographic parameters under the robust design. Biometrics 51:293–308

    Article  CAS  PubMed  Google Scholar 

  • Kendall WL, Nichols JD, Hines JE (1997) Estimating temporary emigration using capture–recapture data with Pollock’s robust design. Ecology 78:563–578

    Google Scholar 

  • Kervinen M, Alatalo RV, Lebigre C, Siitari H, Soulsbury CD (2012) Determinants of yearling male lekking effort and mating success in black grouse (Tetrao tetrix). Behav Ecol 23:1209–1217

    Article  Google Scholar 

  • Klinga P, Mikoláš M, Zhelev P, Höglund J, Paule L (2015) Genetic differentiation of western capercaillie in the Carpathian Mountains: the importance of post glacial expansions and habitat connectivity. Biol J Lin Soc 116:873–889

    Article  Google Scholar 

  • Lagrange P, Pradel R, Bélisle M, Gimenez O (2014) Estimating dispersal among numerous sites using capture–recapture data. Ecology 95:2316–2323

    Article  PubMed  Google Scholar 

  • Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460

    Article  CAS  PubMed  Google Scholar 

  • Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am Nat 142:911–927

    Article  PubMed  Google Scholar 

  • Lande R (1998) Anthropogenic, ecological and genetic factors in extinction and conservation. Popul Ecol 40:259–269

    Article  Google Scholar 

  • Lande R, Orzack SH (1988) Extinction dynamics of age-structured populations in a fluctuating environment. Proc Natl Acad Sci 85:7418–7421

    Article  CAS  PubMed  Google Scholar 

  • Landguth EL, Muhlfeld CC, Waples RS, Jones L, Lowe WH, Whited D, Lucotch J, Neville H, Luikart G (2014) Combining demographic and genetic factors to assess population vulnerability in stream species. Ecol Appl 24:1505–1524

    Article  CAS  PubMed  Google Scholar 

  • Lebigre C, Alatalo RV, Siitari H (2010) Female-biased dispersal alone can reduce the occurrence of inbreeding in black grouse (Tetrao tetrix). Mol Ecol 19:1929–1939

    Article  CAS  PubMed  Google Scholar 

  • Lindström J, Ranta E, Lindén H (1996) Large-scale synchrony in the dynamics of capercaillie, black grouse and hazel grouse populations in Finland. Oikos 76:221–227

    Article  Google Scholar 

  • Luque GM, Vayssade C, Facon B, Guillemaud T, Courchamp F, Fauvergue X (2016) The genetic Allee effect: a unified framework for the genetics and demography of small populations. Ecosphere 7:e01413

    Article  Google Scholar 

  • Mathieu-Bégné E, Loot G, Chevalier M, Paz-Vinas I, Blanchet S (2019) Demographic and genetic collapses in spatially structured populations: insights from a long-term survey in wild fish metapopulations. Oikos 128:196–207

    Article  Google Scholar 

  • Matthysen E (2012) Multicausality of dispersal: a review. In: Clobert J, Baguette M, Benton TG, Bullock JM (eds) Dispersal ecology and evolution. Oxford University Press, Oxford, pp 3–18

    Chapter  Google Scholar 

  • McDonald TL, Amstrup SC (2001) Estimation of population size using open capture–recapture models. J Agric Biol Environ Stat 6:206

    Article  Google Scholar 

  • Meagher S, Penn DJ, Potts WK (2000) Male–male competition magnifies inbreeding depression in wild house mice. Proc Natl Acad Sci 97:3324–3329

    Article  CAS  PubMed  Google Scholar 

  • Melbourne BA, Hastings A (2008) Extinction risk depends strongly on factors contributing to stochasticity. Nature 454:100

    Article  CAS  PubMed  Google Scholar 

  • Ménoni E, Montadert M, Leclercq B, Hurstel A, Dillet K (2012) Change in mating and breeding time of the Capercaillie in France, in relation to the change of the phenology of spring vegetation. In: 12th International Grouse Symposium, Matsumoto, 21–24th July 2012

  • Moss R (1986) Rain, breeding success and distribution of capercaillie Tetrao urogallus and black grouse Tetrao tetrix in Scotland. Ibis 128:65–72

    Article  Google Scholar 

  • Moss R, Oswald J (1985) Population dynamics of capercaillie in a north-east Scottish glen. Ornis Scand 16:229–238

    Article  Google Scholar 

  • Moss R, Oswald J, Baines D (2001) Climate change and breeding success: decline of the capercaillie in Scotland. J Anim Ecol 70:47–61

    Google Scholar 

  • Naeem S, Duffy JE, Zavaleta E (2012) The functions of biological diversity in an age of extinction. Science 336:1401–1406

    Article  CAS  PubMed  Google Scholar 

  • Nunney L, Campbell KA (1993) Assessing minimum viable population size: demography meets population genetics. Trends Ecol Evol 8:234–239

    Article  CAS  PubMed  Google Scholar 

  • O’Grady JJ, Brook BW, Reed DH, Ballou JD, Tonkyn DW, Frankham R (2006) Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol Cons 133:42–51

    Article  Google Scholar 

  • Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447

    Article  PubMed  Google Scholar 

  • Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752

    Article  CAS  PubMed  Google Scholar 

  • Pollock KH (1982) A capture-recapture design robust to unequal probability of capture. J Wildl Manag 46:752–757

    Article  Google Scholar 

  • Pradel R (1996) Utilization of capture-mark-recapture for the study of recruitment and population growth rate. Biometrics 52:703–709

    Article  Google Scholar 

  • Pradel R (2005) Multievent: an extension of multistate capture–recapture models to uncertain states. Biometrics 61:442–447

    Article  PubMed  Google Scholar 

  • Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000) Predicting extinction risk in declining species. Proc R Soc Lond B Biol Sci 267:1947–1952

    Article  CAS  Google Scholar 

  • Reed DH (2005) Relationship between population size and fitness. Conserv Biol 19:563–568

    Article  Google Scholar 

  • Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55:1095–1103

    CAS  PubMed  Google Scholar 

  • Regnaut S, Christe P, Chapuisat M, Fumagalli L (2006) Genotyping faeces reveals facultative kin association on Capercaillie’s leks. Conserv Genet 7:665–674

    Article  Google Scholar 

  • Rintamäki PT, Höglund J, Karvonen E, Alatalo RV, Björklund N, Lundberg A, Rätti O, Vouti J (2000) Combs and sexual selection in black grouse (Tetrao tetrix). Behav Ecol 11:465–471

    Article  Google Scholar 

  • Rodríguez-Muñoz R, Mirol PM, Segelbacher G, Fernández A, Tregenza T (2007) Genetic differentiation of an endangered capercaillie (Tetrao urogallus) population at the Southern edge of the species range. Conserv Genet 8:659–670

    Article  Google Scholar 

  • Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231–253

    Article  Google Scholar 

  • Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Ryder TB, Tori WP, Blake JG, Loiselle BA, Parker PG (2009) Mate choice for genetic quality: a test of the heterozygosity and compatibility hypotheses in a lek-breeding bird. Behav Ecol 21:203–210

    Article  Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491

    Article  CAS  Google Scholar 

  • Saniga M (2011) Why the capercaillie population (Tetrao urogallus L.) in mountain forests in the Central Slovakia decline? Folia Oecologica 38:110–117

    Google Scholar 

  • Segelbacher G, Storch I (2002) Capercaillie in the Alps: genetic evidence of metapopulation structure and population decline. Mol Ecol 11:1669–1677

    Article  CAS  PubMed  Google Scholar 

  • Segelbacher G, Höglund J, Storch I (2003) From connectivity to isolation: genetic consequences of population fragmentation in capercaillie across Europe. Mol Ecol 12:1773–1780

    Article  CAS  PubMed  Google Scholar 

  • Selwood KE, McGeoch MA, Mac Nally R (2015) The effects of climate change and land-use change on demographic rates and population viability. Biol Rev 90:837–853

    Article  PubMed  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  CAS  PubMed  Google Scholar 

  • Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci 101:15261–15264

    Article  CAS  PubMed  Google Scholar 

  • Spottiswoode C, Møller AP (2004) Genetic similarity and hatching success in birds. Proc R Soc Lond B Biol Sci 271:267–272

    Article  Google Scholar 

  • Stephens PA, Sutherland WJ (1999) Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol Evol 14:401–405

    Article  CAS  PubMed  Google Scholar 

  • Stephens PA, Sutherland WJ, Freckleton RP (1999) What is the Allee effect? Oikos 87:185–190

    Article  Google Scholar 

  • Stiver JR, Apa AD, Remington TE, Gibson RM (2008) Polygyny and female breeding failure reduce effective population size in the lekking Gunnison sage-grouse. Biol Cons 141:472–481

    Article  Google Scholar 

  • Storch I (1997) Male territoriality, female range use, and spatial organisation of capercaillie Tetrao urogallus leks. Wildl Biol 3:149–161

    Article  Google Scholar 

  • Storch I (2007) Grouse: Status Survey and Conservation Action Plan 2006–2010. 114 p. (Storch I, editor). Gland, Switzerland: IUCN and Fordingbridge, UK: World Pheasant Association.

  • Stubberud MW, Myhre AM, Holand H, Kvalnes T, Ringsby TH, Sæther BE, Jensen H (2017) Sensitivity analysis of effective population size to demographic parameters in house sparrow populations. Mol Ecol 26:2449–2465

    Article  PubMed  Google Scholar 

  • Szűcs M, Melbourne BA, Tuff T, Weiss-Lehman C, Hufbauer RA (2017) Genetic and demographic founder effects have long-term fitness consequences for colonising populations. Ecol Lett 20:436–444

    Article  PubMed  Google Scholar 

  • Tanaka Y (1997) Extinction of populations due to inbreeding depression with demographic disturbances. Popul Ecol 39:57–66

    Article  Google Scholar 

  • Thomas CD, Kunin WE (1999) The spatial structure of populations. J Anim Ecol 68:647–657

    Article  Google Scholar 

  • Tournier E, Besnard A, Tournier V, Cayuela H (2017) Manipulating waterbody hydroperiod affects movement behaviour and occupancy dynamics in an amphibian. Freshw Biol 62:1768–1782

    Article  CAS  Google Scholar 

  • Tregenza T, Wedell N (2000) Genetic compatibility, mate choice and patterns of parentage: invited review. Mol Ecol 9:1013–1027

    Article  CAS  PubMed  Google Scholar 

  • Verkuil YI, Juillet C, Lank DB, Widemo F, Piersma T (2014) Genetic variation in nuclear and mitochondrial markers supports a large sex difference in lifetime reproductive skew in a lekking species. Ecol Evol 4:3626–3632

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Whitlock MC (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics 163:429–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waples RS, Yokota M (2006) Temporal estimates of effective population size in species with overlapping generations. Genetics 175:219–233

    Article  PubMed  Google Scholar 

  • Warren P, Atterton F, Anderle M, Baines D (2017) Expanding the range of black grouse Tetrao tetrix in northern England through translocating wild males. Wildl Biol 2017(SP1)

  • Wegge P, Larsen BB (1987) Spacing of adult and subadult male Common capercaillie during the breeding-season. Auk 104:481–490

    Article  Google Scholar 

  • Wegge P, Larsen BB, Gjerde I, Kastdalen L, Rolstad J, Storaas T (1987) Natural mortality and predation of adult capercaillie in southeast Norway. In: Proceedings of the fourth international grouse symposium, Lam, World Pheasant Association, pp 49–56  

  • Westemeier RL, Brawn JD, Simpson SA, Esker TL, Jansen RW, Walk JW, Kershner EL, Bouzat JL, Paige KN (1998) Tracking the long-term decline and recovery of an isolated population. Science 282:1695–1698

    Article  CAS  PubMed  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    Article  PubMed  PubMed Central  Google Scholar 

  • Wootton JT, Pfister CA (2013) Experimental separation of genetic and demographic factors on extinction risk in wild populations. Ecology 94:2117–2123

    Article  PubMed  Google Scholar 

  • Young AG, Clarke GM, Cowlishaw G (eds) (2000) Genetics, demography and viability of fragmented populations (Vol 4). Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

The genetic monitoring of capercaillie in the Vosges Mountains was funded by the Life+ Project “Des Forêts pour le Grand tetras”, by the Natura2000 network and by the regional programme of the Capercaillie National Action Plan initiated by the French Ministry of Environment. The project largely relied on the work of volunteers who collected samples during the six years of the study: Antoine Andre, Didier Arseguel, Samuel Audinot, Alix Badre, Etienne Barbier, Dominique Becker, Bernard Binetruy, Frédéric Bocquenet, Noémie Castaing, Sebastien Coulette, Stéphane Damervalle, Luc Dauphin, Richard Delaunay, Lucile Demaret, Michel Despoulin, Laurent Domergue, Vincent Drillon, Christian Dronneau, Fabien Dupont, Arnaud Foltzer, Patrick Foltzer, Marc Gehin, Cyril Gerard, Maxime Girardin, Remi Grandemange, Jean-Claude Gregy, Joaquim Hatton, Thibaut Hingray, Thierry Hue, Arnaud Hurstel, Jean-Nöel Journot, Fabien Kilque, Lydie Lallement, Christian Lamboley, Manuel Lembke, Jean-Michel Letz, Vincent Lis, Olivier Marchand, Paul Massard, Yvan Mougel, Michel Munier, Louis-Michel Nageleisen, Yvan Nicolas, Christian Oberle, Pascal Perrotey-Doridant, Christian Philipps, François Rey-Demaneuf, Dorian Toussaint, Jean-Marie Triboulot, Bruno Vaxelaire, Laurent Verard, Jean-Lou Zimmermann, and Alice Zimmermann. During the writing of the manuscript, Hugo Cayuela was supported by the Swiss National Science Foundation (Grant Number 31003A_182265).

Author information

Authors and Affiliations

Authors

Contributions

HC and GJ conceived and designed the study. FG and AL collected the data. HC, JGP, ML, JG, FF, and BL managed and analyzed the genetic and demographic data. HC wrote the manuscript; other authors provided editorial advice.

Corresponding author

Correspondence to Hugo Cayuela.

Additional information

Communicated by Hannu Pöysä.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cayuela, H., Prunier, J.G., Laporte, M. et al. Demography, genetics, and decline of a spatially structured population of lekking bird. Oecologia 195, 117–129 (2021). https://doi.org/10.1007/s00442-020-04808-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-020-04808-4

Keywords

Navigation