Skip to main content
Log in

Space-Efficient Biconnected Components and Recognition of Outerplanar Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We present space-efficient algorithms for computing cut vertices in a given graph with n vertices and m edges in linear time using \(O(n+\min \{m,n\log \log n\})\) bits. With the same time and using \(O(n+m)\) bits, we can compute the biconnected components of a graph. We use this result to show an algorithm for the recognition of (maximal) outerplanar graphs in \(O(n\log \log n)\) time using O(n) bits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Sysło [29] uses instead of chain the term maximal series of edges.

References

  1. Asano, T., Buchin, K., Buchin, M., Korman, M., Mulzer, W., Rote, G., Schulz, A.: Reprint of: Memory-constrained algorithms for simple polygons. Comput. Geom. Theory Appl. 47(3, Part B), 469–479 (2014). https://doi.org/10.1016/j.comgeo.2013.11.004

    Article  MATH  Google Scholar 

  2. Asano, T., Izumi, T., Kiyomi, M., Konagaya, M., Ono, H., Otachi, Y., Schweitzer, P., Tarui, J., Uehara, R.: Depth-first search using \(O(n)\) bits. In: Proceedings of 25th International Symposium on Algorithms and Computation (ISAAC 2014), LNCS, vol. 8889, pp. 553–564. Springer (2014). https://doi.org/10.1007/978-3-319-13075-0_44

  3. Asano, T., Mulzer, W., Rote, G., Wang, Y.: Constant-work-space algorithms for geometric problems. J. Comput. Geom. 2(1), 46–68 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Banerjee, N., Chakraborty, S., Raman, V.: Improved space efficient algorithms for BFS, DFS and applications. In: Proceeings of 22nd International Conference on Computing and Combinatorics (COCOON 2016), LNCS, vol. 9797, pp. 119–130. Springer (2016). https://doi.org/10.1007/978-3-319-42634-1_10

  5. Barba, L., Korman, M., Langerman, S., Silveira, R.I., Sadakane, K.: Space-time trade-offs for stack-based algorithms. In: Proceeings of 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013), LIPIcs, vol. 20, pp. 281–292. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013). https://doi.org/10.4230/LIPIcs.STACS.2013.281

  6. Baumann, T., Hagerup, T.: Rank-select indices without tears. Computing Research Repository (CoRR) arXiv:1709.02377 [cs.DS] (2017)

  7. Beame, P.: A general sequential time-space tradeoff for finding unique elements. SIAM J. Comput. 20(2), 270–277 (1991). https://doi.org/10.1137/0220017

    Article  MathSciNet  MATH  Google Scholar 

  8. Brandstdt, A., Le, V., Spinrad, J.: Graph classes: a survey. Soc. Ind. Appl. Math. (1999). https://doi.org/10.1137/1.9780898719796

    Google Scholar 

  9. Chakraborty, S., Jo, S., Satti, S.R.: Improved space-efficient linear time algorithms for some classical graph problems. In: Proceedings of 15th Cologne-Twente Workshop on Graphs and Combinatorial Optimization (CTW 2017), pp. 43–46 (2016)

  10. Chakraborty, S., Raman, V., Satti, S.R.: Biconnectivity, chain decomposition and st-numbering using \({O}(n)\) bits. In: Proceeings of 27th International Symposium on Algorithms and Computation (ISAAC 2016), LIPIcs, vol. 64, pp. 22:1–22:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.ISAAC.2016.22

  11. Chakraborty, S., Satti, S.R.: Space-efficient algorithms for maximum cardinality search, stack BFS, queue BFS and applications. In: Proceedings of 23rd International Conference on Computing and Combinatorics (COCOON 2017), LNCS, vol. 10392, pp. 87–98. Springer (2017). https://doi.org/10.1007/978-3-319-62389-4_8

  12. Clark, D.: Compact pat trees. Ph.D. thesis, University of Waterloo, Waterloo, Ontario, Canada (1996)

  13. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  14. Datta, S., Kulkarni, R., Mukherjee, A.: Space-efficient approximation scheme for maximum matching in sparse graphs. In: 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016), Leibniz International Proceedings in Informatics (LIPIcs), vol. 58, pp. 28:1–28:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2016). https://doi.org/10.4230/LIPIcs.MFCS.2016.28

  15. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Berlin (2012)

    Google Scholar 

  16. Edmonds, J., Poon, C.K., Achlioptas, D.: Tight lower bounds for \(st\)-connectivity on the NNJAG model. SIAM J. Comput. 28(6), 2257–2284 (1999). https://doi.org/10.1137/S0097539795295948

    Article  MathSciNet  MATH  Google Scholar 

  17. Elmasry, A., Hagerup, T., Kammer, F.: Space-efficient basic graph algorithms. In: Proceedings of 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015), LIPIcs, vol. 30, pp. 288–301. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015). https://doi.org/10.4230/LIPIcs.STACS.2015.288

  18. Elmasry, A., Kammer, F.: Space-efficient plane-sweep algorithms. In: Proc. 27th International Symposium on Algorithms and Computation (ISAAC 2016), LIPIcs, vol. 64, pp. 30:1–30:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.ISAAC.2016.30

  19. Gabow, H.N.: Path-based depth-first search for strong and biconnected components. Inf. Process. Lett. 74(3–4), 107–114 (2000). https://doi.org/10.1016/S0020-0190(00)00051-X

    Article  MathSciNet  MATH  Google Scholar 

  20. Hagerup, T., Kammer, F.: Succinct choice dictionaries. Computing Research Repository (CoRR) arXiv:1604.06058 [cs.DS] (2016)

  21. Hagerup, T., Kammer, F., Laudahn, M.: Space-efficient Euler partition and bipartite edge coloring. In: Proceedings of 10th International Conference on Algorithms and Complexity (CIAC 2017), LNCS, vol. 10236, pp. 322–333 (2017). https://doi.org/10.1007/978-3-319-57586-5_27

  22. Kammer, F., Kratsch, D., Laudahn, M.: Space-efficient biconnected components and recognition of outerplanar graphs. In: 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016), Leibniz International Proceedings in Informatics (LIPIcs), vol. 58, pp. 56:1–56:14. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2016). https://doi.org/10.4230/LIPIcs.MFCS.2016.56

  23. Mitchell, S.L.: Linear algorithms to recognize outerplanar and maximal outerplanar graphs. Inf. Process. Lett. 9(5), 229–232 (1979). https://doi.org/10.1016/0020-0190(79)90075-9

    Article  MathSciNet  MATH  Google Scholar 

  24. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. Theor. Comput. Sci. 12(3), 315–323 (1980). https://doi.org/10.1016/0304-3975(80)90061-4

    Article  MathSciNet  MATH  Google Scholar 

  25. Pagter, J., Rauhe, T.: Optimal time-space trade-offs for sorting. In: Proceedings of 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1998), pp. 264–268. IEEE Computer Society (1998). https://doi.org/10.1109/SFCS.1998.743455

  26. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17:1–17:24 (2008). https://doi.org/10.1145/1391289.1391291

    Article  MathSciNet  MATH  Google Scholar 

  27. Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970). https://doi.org/10.1016/S0022-0000(70)80006-X

    Article  MathSciNet  MATH  Google Scholar 

  28. Schmidt, J.M.: A simple test on 2-vertex- and 2-edge-connectivity. Inf. Process. Lett. 113(7), 241–244 (2013). https://doi.org/10.1016/j.ipl.2013.01.016

    Article  MathSciNet  MATH  Google Scholar 

  29. Sysło, M.M.: Characterizations of outerplanar graphs. Discrete Math. 26(1), 47–53 (1979). https://doi.org/10.1016/0012-365X(79)90060-8

    Article  MathSciNet  MATH  Google Scholar 

  30. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972). https://doi.org/10.1137/0201010

    Article  MathSciNet  MATH  Google Scholar 

  31. Wiegers, M.: Recognizing outerplanar graphs in linear time. In: Proceedings of International Workshop on Graphtheoretic Concepts in Computer Science (WG 1986), LNCS, vol. 246, pp. 165–176. Springer (1986). https://doi.org/10.1007/3-540-17218-1_57

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Kammer.

Additional information

A preliminary version of this paper appeared in [22].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kammer, F., Kratsch, D. & Laudahn, M. Space-Efficient Biconnected Components and Recognition of Outerplanar Graphs. Algorithmica 81, 1180–1204 (2019). https://doi.org/10.1007/s00453-018-0464-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-018-0464-z

Keywords

Navigation