Skip to main content
Log in

Root growth of somatic plants of hybrid Pinus strobus (L.) and P. wallichiana (A. B. Jacks.) is affected by the nitrogen composition of the somatic embryo germination medium

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

This paper describes improvement in root growth of hybrid white pine somatic plants on a somatic embryo germination medium containing solely organic nitrogen sources.

Abstract

Mature somatic embryos of F2 hybrid Pinus strobus × Pinus wallichiana backcrossed with P. strobus converted to plants but survival of the somatic plants was not satisfactory prompting the present study on somatic seedling root growth on germination media varying in nitrogen (N) composition. The media were modifications of Litvay’s (Litvay et al. in Plant Cell Rep 4:325–328, 1985) which included two main groups: G1, G2, G3, G4 all contained inorganic N with or without glutamine (Gln) or casein hydrolysate (CH) and G5, G6, G7 contained solely glutamine and/or CH. In addition, G8 was half-strength G1 (with organic N) and G9 was half-strength CD (Campbell and Durzan in Can J Bot 53:1652–1657, 1975) without organic N. The roots of plants growing on media containing solely organic N grew about 2.55 times longer than on those containing solely inorganic N or both inorganic and organic N. The longest roots grew on G7 supplemented with CH and on G5 with both CH and Gln. Microarray analysis of somatic plants germinated on G1 versus G7 revealed that depending on the N source the somatic plants displayed changes in the transcriptome resulting in the differential expression of a range of genes involved in essential processes for plant growth and development. Roots grown in the absence of inorganic N were capable of rapid uptake of labelled inorganic 15N during the 2 h incubation in the nutrient solution. The somatic plants from G5 medium acclimatized at the rate twice as high as those from G1 (with both inorganic and organic N) and G2 (solely inorganic N) under standard fertilization regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

SE:

Somatic embryogenesis

N:

Nitrogen

MLV:

Modified Litvay’s medium

CD:

and Durzan medium

CH:

Casein hydrolysate

Gln:

l-Glutamine

WPBR:

White pine blister rust

UDP:

Uridine diphosphate

References

  • Avila C, Suárez MF, Gómez-Maldonado J, Cánovas FM (2001) Spatial and temporal expression of two cytosolic glutamine synthetase genes in Scots pine: functional implications on nitrogen metabolism during early stages of conifer development. Plant J 25:93–102

    Article  CAS  PubMed  Google Scholar 

  • Bauer GA, Berntson GM (2001) Ammonium and nitrate acquisition by plants in response to elevated CO2 concentration: the roles of root physiology and architecture. Tree Physiol 21:137–144

    Article  CAS  PubMed  Google Scholar 

  • Bedell JP, Chalot M, Garnier A, Botton B (1999) Effects of nitrogen source on growth and activity of nitrogen-assimilating enzymes in Douglas-fir seedlings. Tree Physiol 19:205–210

    Article  CAS  PubMed  Google Scholar 

  • Boggy GJ, Woolf PJ (2010) A mechanistic model of PCR for accurate quantification of quantitative PCR data. PLoS One 5(8):e12355

    Article  PubMed  PubMed Central  Google Scholar 

  • Bown HE, Watt MS, Clinton PW, Mason EG (2010) Influence of ammonium and nitrate supply on growth, dry matter partitioning, N uptake and photosynthetic capacity of Pinus radiata seedlings. Trees 24:1097–1107

    Article  CAS  Google Scholar 

  • Brown H, Prescott R (2006) Applied mixed models in medicine, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  • Campbell RA, Durzan DJ (1975) Induction of multiple buds and needles in tissue culture of Picea glauca. Can J Bot 53:1652–1657

    Article  CAS  Google Scholar 

  • Canales J, Avila C, Cantón FR, Pacheco-Villalobos D, Díaz-Moreno S, Ariza D, Molina-Rueda JJ, Navarro-Cerrillo RM, Gonzalo Claros MG, Cánovas FM (2012a) Gene expression profiling in the stem of young maritime pine trees: detection of ammonium stress-responsive genes in the apex. Trees 26:609–619

    Article  CAS  Google Scholar 

  • Canales J, Rueda-López M, Craven-Bartle B, Avila C, Cánovas FM (2012b) Novel insights into regulation of asparagine synthetase in conifers. Front Plant Sci 3:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Canales J, Bautista R, Label P et al (2014) De novo assembly of maritime pine transcriptome: implications for forest breeding and biotechnology. Plant Biotechnol J 12:286–299

    Article  CAS  PubMed  Google Scholar 

  • Cañas RA, de la Torre F, Cánovas FM, Cantón FR (2006) High levels of asparagine synthetase in hypocotyls of pine seedlings suggest a role of the enzyme in re-allocation of seed-stored nitrogen. Planta 224:83–95

    Article  PubMed  Google Scholar 

  • Cañas RA, Canales J, Muñoz-Hernández C, Granados JM, Ávila C, García-Martín ML, Cánovas FM (2015) Understanding developmental and adaptive cues in pine through metabolite profiling and co-expression network analysis. J Exp Bot 66:3113–3127

    Article  PubMed  PubMed Central  Google Scholar 

  • Castro-Rodríguez V, Assaf-Casals I, Pérez-Tienda J, Fan X, Avila C, Miller A, Cánovas FM (2016) Deciphering the molecular basis of ammonium uptake and transport in maritime pine. Plant Cell Environ 39:1669–1682

    Article  PubMed  Google Scholar 

  • Castro-Rodríguez V, Cañas RA, de la Torre FN, Pascual MB, Avila C, Cánovas FM (2017) Molecular fundamentals of nitrogen uptake and transport in trees. J Exp Bot 68:2489–2500

    Article  PubMed  Google Scholar 

  • Chellamuthu VR, Ermilov E, Lapina T, Lüddecke J, Minaeva E, Herrmann C, Hartmann MD, Forchhammer KA (2014) Widespread glutamine-sensing mechanism in the plant kingdom. Cell 159:1188–1199

    Article  CAS  PubMed  Google Scholar 

  • Daoust G, Klimaszewska K, Plourde D (2009) Somatic embryogenesis, a tool for accelerating the selection and deployment of hybrids of eastern white pine (Pinus strobus) and Himalayan white pine (Pinus wallichiana) resistant to white pine blister rust (Cronartium ribicola). In: Noshad D, Noh EW, King J, Sniezko RA (eds) Breeding and genetic resources of five-needle pines. In: Proceedings of the conference 2008, Yangyang, Korea. Korea Forest Research Institute, Seoul. ISBN:978-89-8176-605-4 (93520)

  • Garin E, Bernier-Cardou M, Isabel N, Klimaszewska K, Plourde A (2000) Effect of sugars, amino acids, and culture technique on maturation of somatic embryos of Pinus strobus on medium with two gellan gum concentrations. Plant Cell Tissue Organ Cult 62:27–37

    Article  CAS  Google Scholar 

  • Graan T, Ort DR (1984) Quantitation of the rapid electron donors to P700, the functional plastoquinone pool, and the ratio of the photosystems in spinach chloroplasts. J Biol Chem 259:4003–14010

    Google Scholar 

  • Gruber BD, Giehl RFH, Friedel S, von Wiren N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163:161–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187

    Article  CAS  Google Scholar 

  • Kiba T, Krapp A (2016) Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant Cell Physiol 57:707–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klimaszewska K, Bernier-Cardou M, Cyr DR, Sutton BCS (2000) Influence of gelling agents on culture medium gel strength, water availability, tissue water potential, and maturation response in embryogenic cultures of Pinus strobus L. Vitro Cell Dev Biol Plant 36:279–286

    Article  CAS  Google Scholar 

  • Klimaszewska K, Park Y-S, Overton C, Maceacheron I, Bonga JM (2001) Optimized somatic embryogenesis in Pinus strobus L. Vitro Cell Dev Biol Plant 37:392–399

    Article  Google Scholar 

  • Klimaszewska K, Morency F, Jones-Overton C, Cooke J (2004) Accumulation pattern and identification of seed storage proteins in zygotic embryos of Pinus strobus and in somatic embryos from different maturation treatments. Physiol Plant 121:682–690

    Article  CAS  Google Scholar 

  • Klimaszewska K, Hargreaves C, Lelu-Walter MA, Trontin JF (2016) Advances in conifer somatic embryogenesis since year 2000. In: Germanà MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Humana Press, Hatfield, pp 131–166

    Chapter  Google Scholar 

  • Lima JE, Kojima S, Takahashi H, von Wirén N (2010) Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1;3-dependent manner. Plant Cell 22:3621–3633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linkohr BI, Williamson LC, Fitter AH, Leyser O (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J 29:751–760

    Article  CAS  PubMed  Google Scholar 

  • Litvay JD, Verma DC, Johnson MA (1985) Influence of a loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep 4:325–328

    Article  CAS  PubMed  Google Scholar 

  • Milliken GA, Johnson DE (2009) Analysis of messy data, Volume 1, Designed experiments, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    Article  PubMed  Google Scholar 

  • Öhlund J, Näsholm T (2001) Growth of conifer seedlings on organic and inorganic nitrogen sources. Tree Physiol 21:1319–1326

    Article  PubMed  Google Scholar 

  • Öhlund J, Näsholm T (2004) Regulation of organic and inorganic nitrogen uptake in Scots pine (Pinus sylvestris) seedlings. Tree Physiol 24:1397–1402

    Article  PubMed  Google Scholar 

  • Percy RE, Klimaszewska K, Cyr DR (2000) Evaluation of somatic embryogenesis for clonal propagation of western white pine. Can J For Res 30:1867–1876

    Article  Google Scholar 

  • Ritz C, Spiess AN (2008) qpcR: an R package for sigmoidal model selection in quantitative real-time polymerase chain reaction analysis. Bioinformatics 24:1549–1551

    Article  CAS  PubMed  Google Scholar 

  • Van Zyl L, von Arnold S, Chen Y, Egertsdotter U, Mackay J, Sederoff R, Shen J, Zelena L, Clapham DH (2002) Heterologous array analysis in Pinaceae: hybridization of Pinus taeda cDNA arrays with cDNA from needles and embryogenic cultures of P. taeda, P. sylvestris or Picea abies. Comp Funct Genom 3:306–318

    Article  Google Scholar 

  • Wei H, Yordanov YS, Georgieva T, Li X, Busov V (2013) Nitrogen deprivation promotes Populus root growth through global transcriptome reprogramming and activation of hierarchical genetic networks. New Phytol 200:483–497

    Article  CAS  PubMed  Google Scholar 

  • Westfall P, Tobias RD, Rom D, Wolfinger RD, Hochberg RD (1999) Multiple comparisons and multiple tests using the SAS system. SAS Institute Inc., Cary

    Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the Spanish Ministerio de Economía y Competitividad (BIO2015-69285-R) and Junta de Andalucía (BIO-474) to M.T.L.L. We gratefully acknowledge the assistance of Dr. Javier Canales (University of Malaga) with microarray analysis, Mrs. Cathy Overton with the production of mature somatic embryos and acclimatization of somatic plants and Mrs. Michèle Bernier-Cardou for the statistical analyses (Natural Resources Canada, Canadian Forest Service).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Klimaszewska.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by K. Noguchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

468_2017_1635_MOESM1_ESM.pptx

Fig. S1 Comparison between microarray and qPCR expression data to validate the microarray hybridizations. Closed bars correspond to Log2FC from microarray data and open bars to Log2FC from qPCR ones. Selected genes from P. pinaster (SustainPineDB) were: PpChS (chalcone synthase), PpEAP (embryo-abundant protein), Pp40sRP (40s ribosomal protein s19), Pp24kdP (24 kDa seed maturation protein), PpNADH (nadh:ubiquinone oxidoreductase family protein), PpPSII (photosystem ii 10 kDa chloroplast), PpChl (chlorophyll a b-binding protein), PpEF1β (elongation factor 1-beta), PpGS1a (glutamine synthetase 1a) and PpGS1b (glutamine synthetase 1b) (PPTX 48 KB)

Supplementary material 2 (DOCX 39 KB)

Table S6 Results of microarray analysis (XLSX 1518 KB)

Table S7 List of primer sequences used for microarray validation (XLSX 1518 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llebrés, M.T., Avila, C., Cánovas, F.M. et al. Root growth of somatic plants of hybrid Pinus strobus (L.) and P. wallichiana (A. B. Jacks.) is affected by the nitrogen composition of the somatic embryo germination medium. Trees 32, 371–381 (2018). https://doi.org/10.1007/s00468-017-1635-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-017-1635-2

Keywords

Navigation