Skip to main content
Log in

A spatio-temporal Poisson hurdle point process to model wildfires

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Wildfires have been studied in many ways, for instance as a spatial point pattern or through modeling the size of fires or the relative risk of big fires. Lately a large variety of complex statistical models can be fitted routinely to complex data sets, in particular wildfires, as a result of widely accessible high-level statistical software, such as R. The objective in this paper is to model the occurrence of big wildfires (greater than a given extension of hectares) using an adapted two-part econometric model, specifically a hurdle model. The methodology used in this paper is useful to determine those factors that help any fire to become a big wildfire. Our proposal and methodology can be routinely used to contribute to the management of big wildfires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amaral-Turkman MA, Turkman KF, Le PY, Pereira JMC (2011) Hierarchical space-time models for fire ignition and percentage of land burned by wildfires. Environ Ecol Stat 18:601–617

    Article  Google Scholar 

  • Bachmann A, Allgower B (2001) A consistent wildland fire risk terminology is needed. Fire Manag Today 61(4):28–33

    Google Scholar 

  • Baddeley A, Turner R (2005) Spatstat: an R package for analyzing spatial point patterns. J Stat Softw 12:1–42

    Google Scholar 

  • Berman M, Turner, TR (1992) Approximating point process likelihoods with GLIM. J Appl Stat 41:31–38

    Article  Google Scholar 

  • Blangiardo M, Cameletti M, Baio G, Rue H (2013) Spatial and spatio-temporal models with R-INLA. Spatial Spatio-temporal Epidemiol 4:33–49

    Article  Google Scholar 

  • Bremaud P (1981) Point processes and queues: martingale dynamics. Springer, New York

    Book  Google Scholar 

  • Chuvieco E (2009) Earth observation of wildland fires in Mediterranean ecosystems. Springer, Berlin

    Book  Google Scholar 

  • Comas C, Palahi M, Pukkala T, Mateu J (2009) Characterising forest spatial structure through inhomogeneous second order characteristics. Stoch Environ Res Risk Assess 23:387–397

    Article  Google Scholar 

  • Comas C, Mateu J (2011) Statistical inference for Gibbs point processes based on field observations. Stoch Environ Res Risk Assess 25:287–300

    Article  Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data (revised ed). Wiley, New York

  • Daley D, Vere-Jones D (2003) An introduction to the theory of point processes, 2nd edn, vol I. Springer, New York

    Google Scholar 

  • Deb DP, Trivedi PK (2002) The structure of demand for health care: latent class versus two-part models. J Health Econ 21:601–625

    Article  Google Scholar 

  • Diggle PJ (2003) Statistical analysis of spatial point patterns, 2nd edn. Arnold, London

    Google Scholar 

  • Dillon GK, Holden ZA, Morgan P, Crimmins MA, Heyerdahl EK, Luce CH (2011) Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006. Ecosphere 2(12):1–33

    Article  Google Scholar 

  • Fernandes PM, Botelho HS (2003) A review of prescribed burning effectiveness in fire hazard reduction. Int J Wildl Fire 12(2):117–128

    Article  Google Scholar 

  • García M, Chuvieco E, Nieto H, Aguado I (2008) Combining AVHRR and meteorological data for estimating live fuel moisture. Remote Sens Environ 112(9):3618–3627

    Article  Google Scholar 

  • Gneiting T, Kleiber W, Schlather M (2010) Matérn cross-covariance functions for multivariate random fields. J Am Stat Assoc 105(491):1167–1177

    Article  CAS  Google Scholar 

  • Gonzalez JR, Pukkala T (2007) Characterization of forest fires in Catalonia (north-east Spain). Eur J For Res 126(3):421–429

    Article  Google Scholar 

  • Harvill JL (2010) Spatio-temporal processes. WIREs Comput Stat 2:375–382

    Article  Google Scholar 

  • Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 8:918–921

    Article  Google Scholar 

  • Illian JB, Hendrichsen DK (2010) Gibbs point process models with mixed effects. Environmetrics 21:341–353

    Article  Google Scholar 

  • Illian JB, Sorbye SH, Rue H (2012) A toolbox for fitting complex spatial point processes models using integreted nested Laplace approximations (INLA). Ann Appl Stat 6(4):1499–1530

    Article  Google Scholar 

  • Juan P, Mateu J, Saez M (2012) Pinpointing spatio-temporal interactions in wildfire patterns. Stoch Environ Res Risk Assess 26(8):1131–1150

    Article  Google Scholar 

  • Lindgren F, Rue H, Lindström J (2011) An explicit link between Gaussian fields and Gaussian Markov random fields the SPDE approach. J R Stat Soc Ser B 73:423–498

    Article  Google Scholar 

  • Møller J, Díaz-Avalos C (2010) Structured spatio-temporal shot-noise Cox point process models, with a view to modelling forest fires. Scand J Stat 37:2–15

    Article  Google Scholar 

  • Mullahy J (1986) Specification and testing of some modified count data models. J Econometri 33:341–365

    Article  Google Scholar 

  • Neelon B, Ghosh P, LoebsMullahy PF (2013) A spatial Poisson hurdle model for exploring geographic variation in emergency department visits. J R Stat Soc Ser A 176(2):389–413

    Article  Google Scholar 

  • Ordóñez C, Saavedra A, Rodríguez-Pérez JR, Castedo-Dorado F, Covin E (2012) Using model-based geostatistics to predict lightning-caused wildfires. Environ Modell Softw 29(1):44–50

    Article  Google Scholar 

  • Piñol J, Terradas J, Lloret R (1998) Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim Change 38:345–357

    Article  Google Scholar 

  • Plummer M, Penalized L (2008) Functions for Bayesian model Comparation. Biostatistics 9(3):523–539

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, http://www.r-project.org/

  • R-INLA project. http://www.r-inla.org/home. Accessed 13 Aug 2012

  • Reus Dolz ML, Irastorza F (2003) Estado del Conocimiento de causas sobre los incendios forestales en Espana. APAS and IDEM Estudio sociologico sobre la percepcion de la poblacion espanola hacia los incendios forestales. http://www.idem21.com/descargas/pdfs/IncediosForestales.pdf

  • Røder A, Hill J, Duguy B, Alloza JA, Vallejo R (2008) Using long time series of landsat data to monitor fire events and post-fire dynamics and identify driving factors. A case study in the Ayora region (eastern Spain). Remote Sens Environ 112(1):259–273

    Article  Google Scholar 

  • Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion). J R Stat Soc Ser B 71:319–392

    Article  Google Scholar 

  • Saez M, Barcelo MA, Tobias A, Varga D, Ocaña-Riola R, Juan P, Mateu J (2012) Space–time interpolation of daily air temperatures. J Environ Stat 3(5)

  • San-Miguel-Ayanza J, Rodrigues M, Santos de Oliveira S, Kemper Pacheco C, Moreira F, Duguy B, Camia A (2012) Land cover change and fire regime in the European Mediterranean region. In: Moreira F, Arianoustsou M, Corona P, de las Heras J (eds) Post-fire mangement and restoration of southern European forests managing forest ecosystems. Springer, Berlin, pp 21–43

    Chapter  Google Scholar 

  • San-Miguel-Ayanza J, Moreno JM, Camia A (2013) Analysis of large fires in European Mediterranean landscapes: lessons learned and perspectives. For Ecol Manag 294:11–22

    Article  Google Scholar 

  • Simpson D, Illian J, Lindgren F, Sorbye SH, Rue H (2011) Going off grid: computationally efficient inference for log-Gaussian Cox processes. Technical Report, Trondheim University

  • Serra L, Juan P, Varga D, Mateu J, Saez M (2012) Spatial pattern modelling of wildfires in Catalonia, Spain 2004–2008. Environ Modell Softw 40:235–244

    Article  Google Scholar 

  • Tiernery L, Kadane JB (1986) Accurate approximations for posterior moments and marginal densities. J Am Stat Assoc 81:82–86

    Article  Google Scholar 

  • Turner R (2009) Point patterns of forest fire locations. Environ Ecol Stat 16:197–223

    Article  Google Scholar 

  • Wang Z, Ma R, Li S (2012) Assessing area-specific relative risks from large forest fire in Canada. Environ Ecol Stat 20(2):285–296

    Google Scholar 

  • Wisdom M, Dlamini A (2010) Bayesian belief network analysis of factor influencing wildfire occurrence in Swaziland. Environ Modell Softw 25(2):199–208

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by Grant MTM2010-14961 from the Spanish Ministry of Science and Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Serra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serra, L., Saez, M., Juan, P. et al. A spatio-temporal Poisson hurdle point process to model wildfires. Stoch Environ Res Risk Assess 28, 1671–1684 (2014). https://doi.org/10.1007/s00477-013-0823-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-013-0823-x

Keywords

Navigation