Skip to main content
Log in

The parity problem of polymatroids without double circuits

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

According to the present state of the theory of the matroid parity problem, the existence of a good characterization to the size of a maximum matching depends on the behavior of certain substructures, called double circuits. In this paper we prove that if a polymatroid has no double circuits then a partition type min-max formula characterizes the size of a maximum matching. Applications to parity constrained orientations and to a rigidity problem are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Dress and L. Lovász: On some combinatorial properties of algebraic matroids, Combinatorica 7(1) (1987), 39–48.

    Article  MATH  MathSciNet  Google Scholar 

  2. Zs. Fekete: Source location with rigidity and tree packing requirements, Technical Report TR-2005-04, Egerváry Research Group (EGRES), Budapest (2005). http://www.cs.elte.hu/egres

    Google Scholar 

  3. A. Frank, T. Jordán and Z. Szigeti: An orientation theorem with parity conditions, Discrete Appl. Math. 115(1–3) (2001), 37–47. 1st Japanese-Hungarian Symposium for Discrete Mathematics and its Applications (Kyoto, 1999).

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Frank, T. Király and Z. Király: On the orientation of graphs and hypergraphs, Discrete Appl. Math. 131(2) (Submodularity) (2003), 385–400.

    Article  MATH  MathSciNet  Google Scholar 

  5. András Frank: On the orientation of graphs, J. Combin. Theory Ser. B 28(3) (1980), 251–261.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. M. Jensen and B. Korte: Complexity of matroid property algorithms, SIAM J. Comput. 11(1) (1982), 184–190.

    Article  MATH  MathSciNet  Google Scholar 

  7. T. Király and J. Szabó: A note on parity constrained orientations, Technical Report TR-2003-11, Egerváry Research Group, Budapest, (2003). http://www.cs.elte.hu/egres

    Google Scholar 

  8. G. Laman: On graphs and rigidity of plane skeletal structures, J. Engrg. Math. 4 (1970), 331–340.

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Lovász: Matroid matching and some applications, J. Combin. Theory Ser. B 28(2) (1980), 208–236.

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Lovász: Selecting independent lines from a family of lines in a space, Acta Sci. Math. (Szeged) 42(1–2) (1980), 121–131.

    MATH  MathSciNet  Google Scholar 

  11. L. Lovász: The matroid matching problem, in Algebraic methods in graph theory, Vol. I, II (Szeged, 1978), volume 25 of Colloq. Math. Soc. János Bolyai, pages 495–517, North-Holland, Amsterdam, 1981.

    Google Scholar 

  12. L. Lovász and Y. Yemini: On generic rigidity in the plane, SIAM J. Algebraic Discrete Methods 3(1) (1982), 91–98.

    Article  MATH  MathSciNet  Google Scholar 

  13. Gyula Pap: A constructive approach to matching and its generalizations, PhD thesis, Eötvös University, Budapest, 2006.

    Google Scholar 

  14. Alexander Schrijver: Combinatorial optimization. Polyhedra and efficiency; volume 24 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 2003.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jácint Szabó.

Additional information

Research is supported by OTKA grants K60802, TS049788 and by European MCRTN Adonet, Contract Grant No. 504438.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makai, M., Szabó, J. The parity problem of polymatroids without double circuits. Combinatorica 28, 679–692 (2008). https://doi.org/10.1007/s00493-008-2374-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-008-2374-1

Mathematics Subject Classification (2000)

Navigation