Skip to main content
Log in

Bounds on the number of autotopisms and subsquares of a Latin square

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

A subsquare of a Latin square L is a submatrix that is also a Latin square. An autotopism of L is a triplet of permutations (α, β, γ) such that L is unchanged after the rows are permuted by α, the columns are permuted by β and the symbols are permuted by γ. Let n!(n−1)!R n be the number of n×n Latin squares. We show that an n×n Latin square has at most n O(log k) subsquares of order k and admits at most n O(log n) autotopisms. This enables us to show that {ie11-1} divides R n for all primes p. We also extend a theorem by McKay and Wanless that gave a factorial divisor of R n , and give a new proof that R p ≠1 (mod p) for prime p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Alter: How many Latin squares are there?, Amer. Math. Monthly 82 (1975), 632–634.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. A. Bailey: Latin squares with highly transitive automorphism groups, J. Aust. Math. Soc. 33 (1982), 18–22.

    Article  MATH  Google Scholar 

  3. S. R. Blackburn, P. M. Neumann and G. Venkataraman: Enumeration of finite groups, Cambridge Tracts in Mathematics 173, Cambridge University Press, 2007.

    Book  MATH  Google Scholar 

  4. J. Browning, P. Vojtěchovský and I. M. Wanless: Overlapping Latin subsquares and full products, Comment. Math. Univ. Carolin. 51 (2010), 175–184.

    MathSciNet  MATH  Google Scholar 

  5. P. J. Cameron: Research problems from the BCC22, Discrete Math. 13 (2011), 1074–1083.

    Article  Google Scholar 

  6. N. J. Cavenagh, C. Greenhill, and I. M. Wanless: The cycle structure of two rows in a random Latin square, Random Structures Algorithms 33 (2008), 286–309.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. M. Cohn: Basic algebra: groups, rings, and fields, Springer, 2003.

    Google Scholar 

  8. K. Heinrich and W. D. Wallis: The maximum number of intercalates in a Latin square, Lecture Notes in Math. 884, Springer, 1981, 221–233.

    Article  MathSciNet  Google Scholar 

  9. A. Hulpke, P. Kaski, and P. R. J. Östergård: The number of Latin squares of order 11, Math. Comp. 80 (2011), 1197–1219.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Kotlar: Parity types, cycle structures and autotopisms of Latin squares, Electron. J. Combin. 19(3) (2012), P10.

    MathSciNet  Google Scholar 

  11. B. Maenhaut, I. M. Wanless, and B. S. Webb: Subsquare-free Latin squares of odd order, European J. Combin. 28 (2007), 322–336.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. D. McKay, A. Meynert, and W. Myrvold: Small Latin squares, quasigroups, and loops, J. Combin. Des. 15 (2007), 98–119.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. D. McKay and I. M. Wanless: Most Latin squares have many subsquares, J. Combin. Theory Ser. A 86 (1999), 323–347.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. D. McKay and I. M. Wanless: On the number of Latin squares: Ann. Comb. 9 (2005), 335–344.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. D. McKay, I. M. Wanless and X. Zhang: The order of automorphisms of quasigroups, preprint.

  16. G. L. Miller: On the n log n isomorphism technique: A preliminary report, Proc. Tenth Annual ACM Symposium on Theory of Computing, 1978, 51–58.

    Chapter  Google Scholar 

  17. N. J. A. Sloane: The on-line encyclopedia of integer sequences. http://oeis.org/[oeis.org].

  18. D. S. Stones: The parity of the number of quasigroups, Discrete Math. 21 (2010), 3033–3039.

    Article  MathSciNet  Google Scholar 

  19. D. S. Stones: On the Number of Latin Rectangles, PhD thesis, Monash University, 2010. http://arrow.monash.edu.au/hdl/1959.1/167114.

    Google Scholar 

  20. D. S. Stones: The many formulae for the number of Latin rectangles, Electron. J. Combin. 17 (2010), A1.

    MathSciNet  Google Scholar 

  21. D. S. Stones, P. Vojtěchovský and I. M. Wanless: Cycle structure of autotopisms of quasigroups and Latin squares, J. Combin. Designs 20 (2012), 227–263.

    Article  MATH  Google Scholar 

  22. D. S. Stones and I. M. Wanless: Compound orthomorphisms of the cyclic group, Finite Fields Appl. 16 (2010), 277–289.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. S. Stones and I. M. Wanless: A Congruence Connecting Latin Rectangles and Partial Orthomorphisms, Ann. Comb. 16 (2012), 349–365.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. S. Stones and I. M. Wanless: Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204–215.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. S. Stones and I. M. Wanless: How not to prove the Alon-Tarsi Conjecture, Nagoya Math. J. 205 (2012), 1–24.

    MathSciNet  MATH  Google Scholar 

  26. G. H. J. van Rees: Subsquares and transversals in Latin squares, Ars Combin. 29 (1990), 193–204.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Browning.

Additional information

Supported by ARC grants DP0662946 and DP1093320. Stones also partially supported by NSFC grant 61170301.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Browning, J., Stones, D.S. & Wanless, I.M. Bounds on the number of autotopisms and subsquares of a Latin square. Combinatorica 33, 11–22 (2013). https://doi.org/10.1007/s00493-013-2809-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-013-2809-1

Mathematics Subject Classification (2000)

Navigation