Skip to main content
Log in

Bipartite partial duals and circuits in medial graphs

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

It is well known that a plane graph is Eulerian if and only if its geometric dual is bipartite. We extend this result to partial duals of plane graphs. We then characterize all bipartite partial duals of a plane graph in terms of oriented circuits in its medial graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Asratian, T. Denley and R. Häggkvist: Bipartite graphs and their applications, Cambridge Tracts in Mathematics, 131. Cambridge University Press, Cambridge, 1998.

    Book  MATH  Google Scholar 

  2. J. Bondy and U. Murty: Graph theory, Graduate Texts in Mathematics 244, Springer, Berlin, 2008.

    Google Scholar 

  3. S. Chmutov: Generalized duality for graphs on surfaces and the signed Bollobás-Riordan polynomial, J. Combin. Theory Ser. B 99 (2009) 617–638 arXiv:0711.3490.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Edmonds: On the surface duality of linear graphs, J. Res. Nat. Bur. Standards Sect. B 69B (1965) 121–123.

    Article  MathSciNet  Google Scholar 

  5. J. A. Ellis-Monaghan and I. Moffatt: Twisted duality for embedded graphs, Trans. Amer. Math. Soc. 364 (2012) 1529–1569.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Huggett, I. Moffatt and N. Virdee: On the graphs of link diagrams and their parallels, Math. Proc. Cambridge Philos. Soc., 153 (2012) 123–145 arXiv:1106.4197.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Jaeger: A note on sub-Eulerian graphs, J. Graph Theory 3 (1979) 91–93.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Krajewski, V. Rivasseau and F. Vignes-Tourneret: Topological graph polynomials and quantum field theory, Part II: Mehler kernel theories, ann. Henri Poincaré 12 (2011) 1–63 arXiv:0912.5438.

    Google Scholar 

  9. I. Moffatt: Unsigned state models for the Jones polynomial, Ann. Comb. 15 (2011) 127–146 arXiv:0710.4152.

    Article  MathSciNet  MATH  Google Scholar 

  10. I. Moffatt: Partial duality and Bollobás and Riordan’s ribbon graph polynomial, Discrete Math. 310 (2010) 174–183 arXiv:0809.3014.

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Moffatt: A characterization of partially dual graphs, J. Graph Theory 67 (2011) 198–217 arXiv:0901.1868.

    Article  MathSciNet  MATH  Google Scholar 

  12. I. Moffatt: Partial duals of plane graphs, separability and the graphs of knots, Algebr. Geom. Topol. 12 (2012) 1099–1136 arXiv:1007.4219.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. van Lint and R. Wilson: A course in combinatorics, Cambridge University Press, Cambridge, 2001.

    Book  MATH  Google Scholar 

  14. F. Vignes-Tourneret: The multivariate signed Bollobás-Riordan polynomial, Discrete Math. 309 (2009) 5968–5981 arXiv:0811.1584.

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Vignes-Tourneret: Non-orientable quasi-trees for the Bollobás-Riordan polynomial, European J. Combin. 32 (2011) 510–532.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Welsh: Euler and bipartite matroids, J. Combinatorial Theory 6 (1969) 375–377.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Whitney: Non-separable and planar graphs, Trans. Amer. Math. Soc. 34 (1932) 339–362.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Huggett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huggett, S., Moffatt, I. Bipartite partial duals and circuits in medial graphs. Combinatorica 33, 231–252 (2013). https://doi.org/10.1007/s00493-013-2850-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-013-2850-0

Mathematics Subject Classification (2000)

Navigation