Skip to main content
Log in

The typical structure of graphs with no large cliques

  • Original paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

In 1987, Kolaitis, Prömel and Rothschild proved that, for every fixed r∈ℕ, almost every n-vertex K r+1-free graph is r-partite. In this paper we extend this result to all functions r = r(n) with r ⩽ (logn)1/4. The proof combines a new (close to sharp) supersaturation version of the Erdős-Simonovits stability theorem, the hypergraph container method, and a counting technique developed by Balogh, Bollobás and Simonovits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Alon, J. Balogh, B. Bollobás and R. Morris: The structure of almost all graphs in a hereditary property, J. Combin. Theory, Ser. B 101 (2011), 85–110.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Alon, J. Balogh, P. Keevash and B. Sudakov: The number of edge colorings with no monochromatic cliques, J. London Math. Soc. 70 (2004), 273–288.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Alon and J.H. Spencer: The probabilistic method, 3rd edition, Wiley, New York, (2008).

    Book  MATH  Google Scholar 

  4. J. Balogh and J. Butterfield: Excluding induced subgraphs: critical graphs, Random Structures Algorithms 38 (2011), 100–120.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Balogh, B. Bollobás and M. Simonovits: The number of graphs without forbidden subgraphs, J. Combin. Theory, Ser. B 91 (2004), 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Balogh, B. Bollobás and M. Simonovits: The typical structure of graphs without given excluded subgraphs, Random Structures Algorithms 34 (2009), 305–318.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Balogh, R. Morris and W. Samotij: Independent sets in hypergraphs, J. Amer. Math. Soc 28 (2015), 669–709.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Balogh, R. Morris, W. Samotij and L. Warnke: The typical structure of sparse K r+1-free graphs, to appear in Trans. Amer. Math. Soc.

  9. B. Bollobás and V. Nikiforov: The number of graphs with large forbidden subgraphs, European J. Combin. 32 (2010), 1964–1968.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Bollobás and A. Thomason: Projections of bodies and hereditary properties of hypergraphs, Bull. London Math. Soc. 27 (1995) 417–424.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Erdős: On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964), 183–190.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Erdős, P. Frankl and V. Rödl: The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs Combin. 2 (1986), 113–121.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Erdős, D. J. Kleitman and B.L. Rothschild: Asymptotic enumeration of K n-free graphs, Colloquio Internazionale sulle Teorie Combinatorie (Rome, (1973)), Tomo II, 19-27. Atti dei Convegni Lincei, No. 17, Accad. Naz. Lincei, Rome, (1976).

    Google Scholar 

  14. P. Erdős and M. Simonovits: A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966), 51–57.

    MathSciNet  MATH  Google Scholar 

  15. P. Erdős and G. Szekeres: A combinatorial problem in geometry, Compos. Math. 2 (1935), 463–470.

    MathSciNet  MATH  Google Scholar 

  16. Z. Füredi: A proof of the stability of extremal graphs, Simonovits’ stability from Szemerédi’s regularity, arXiv:1501.03129.

  17. P. G. Kolaitis, H. J. Prömel and B. L. Rothschild: K l+1-free graphs: asymptotic structure and a 0-1 law, Trans. Amer. Math. Soc. 303 (1987), 637–671.

    MathSciNet  MATH  Google Scholar 

  18. L. Lovász and M. Simonovits: On the number of complete subgraphs of a graph, II, Studies in pure mathematics, Birkhuser (1983), 459–495.

    Chapter  Google Scholar 

  19. W. Mantel: Problem 28, Wiskundige Opgaven 10 (1907), 60–61.

    Google Scholar 

  20. F. Mousset, R. Nenadov and A. Steger: On the number of graphs without large cliques, Siam J. Discrete Math. 28 (2014), 1980–1986.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Osthus, H. J. Prömel and A. Taraz: For which densities are random trianglefree graphs almost surely bipartite?, Combinatorica 23 (2003), 105–150.

    Article  MathSciNet  MATH  Google Scholar 

  22. H. J. Prömel and A. Steger: The asymptotic number of graphs not containing a fixed color-critical subgraph, Combinatorica 12 (1992), 463–473.

    Article  MathSciNet  MATH  Google Scholar 

  23. F.P. Ramsey: On a problem of formal logic, Proc. London Math. Soc. 30 (1930), 264–286.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Simonovits: A method for solving extremal problems in graph theory, stability problems, Theory of graphs (Proc. Colloq., Tihany, (1966)), Academic press, New York, (1968), 279–319.

    Google Scholar 

  25. D. Saxton and A. Thomason: Hypergraph containers, to appear in Invent. Math.

  26. P. Turán: Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941), 436–452.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Morris.

Additional information

Research supported in part by a Simons Fellowship, NSF CAREER Grant DMS-0745185, Marie Curie FP7-PEOPLE-2012-IIF 327763, Arnold O. Beckman Research Award (UIUC Campus Research Board 13039) (JB), CAPES bolsa Proex (MCN), a CNPq bolsa PDJ (NB) and a CNPq bolsa de Produtividade em Pesquisa (RM)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balogh, J., Bushaw, N., Collares, M. et al. The typical structure of graphs with no large cliques. Combinatorica 37, 617–632 (2017). https://doi.org/10.1007/s00493-015-3290-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-015-3290-9

Mathematics Subject Classification (2000)

Navigation