Skip to main content
Log in

An efficient hybrid algorithm based on Water Cycle and Moth-Flame Optimization algorithms for solving numerical and constrained engineering optimization problems

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper proposes a hybrid algorithm based on Water Cycle and Moth-Flame Optimization algorithms for solving numerical and constrained engineering optimization problems. The spiral movement of moths in Moth-Flame Optimization algorithm is introduced into the Water Cycle Algorithm to enhance its exploitation ability. In addition, to increase randomization in the new hybrid method, the streams in the Water Cycle Algorithm are allowed to update their position using a random walk (Levy flight). The random walk significantly improves the exploration ability of the Water Cycle Algorithm. The performance of the new hybrid Water Cycle–Moth-Flame Optimization algorithm (WCMFO) is investigated in 23 benchmark functions such as unimodal, multimodal and fixed-dimension multimodal benchmark functions. The results of the WCMFO are compared to the other state-of-the-art metaheuristic algorithms. The results show that the hybrid method is able to outperform the other state-of-the-art metaheuristic algorithms in majority of the benchmark functions. To evaluate the efficiency of the WCMFO in solving complex constrained engineering and real-life problems, three well-known structural engineering problems are solved using WCMFO and the results are compared with the ones of the other metaheuristics in the literature. The results of the simulations revealed that the WCMFO is able to provide very competitive and promising results comparing to the other hybrid and metaheuristic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source: Eskandar et al. (2012)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheyl Khalilpourazari.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilpourazari, S., Khalilpourazary, S. An efficient hybrid algorithm based on Water Cycle and Moth-Flame Optimization algorithms for solving numerical and constrained engineering optimization problems. Soft Comput 23, 1699–1722 (2019). https://doi.org/10.1007/s00500-017-2894-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2894-y

Keywords

Navigation