Skip to main content
Log in

Generalized Hukuhara-Clarke Derivative of Interval-valued Functions and its Properties

  • Optimization
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of gH-Clarke derivative for interval-valued functions. To find properties of the gH-Clarke derivative, the concepts of limit superior, limit inferior, and sublinear interval-valued functions are studied in the sequel. It is proved that the upper gH-Clarke derivative of a gH-Lipschitz continuous interval-valued function (IVF) always exists. For a convex and gH-Lipschitz IVF, the upper gH-Clarke derivative is found to be identical with the gH-directional derivative. It is observed that the upper gH-Clarke derivative is a sublinear IVF. Several numerical examples are provided to support the entire study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  • Ansari QH, Lalitha CS, Mehta M (2013) Generalized convexity, nonsmooth variational inequalities, and nonsmooth optimization. CRC Press, New York

    Book  Google Scholar 

  • Bede B, Gal SG (2005) Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst 151:581–599

    Article  MathSciNet  Google Scholar 

  • Bhurjee AK, Padhan SK (2016) Optimality conditions and duality results for non-differentiable interval optimization problems. J Appl Math Comput 50(1–2):59–71

    Article  MathSciNet  Google Scholar 

  • Chalco-Cano Y, Rufian-Lizana A, Román-Flores H, Jiménez-Gamero MD (2013) Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets Syst 219:49–67

    Article  MathSciNet  Google Scholar 

  • Chalco-Cano Y, Román-Flores H, Jiménez-Gamero MD (2011) Generalized derivative and \(\pi \)-derivative for set-valued functions. Inf Sci 181(11):2177–2188

    Article  MathSciNet  Google Scholar 

  • Clarke FH (1990) Optimization and nonsmooth analysis, vol 5. SIAM

  • Costa TM, Chalco-Cano Y, Lodwick WA, Silva GN (2015) Generalized interval vector spaces and interval optimization. Inf Sci 311:74–85

    Article  MathSciNet  Google Scholar 

  • Delfour MC (2012) Introduction to optimization and semidifferential calculus, Society for Industrial and Applied Mathematics

  • Demyanov VF (2002) The rise of nonsmooth analysis: its main tools. Cybern Syst Anal 38(4):527–547

    Article  MathSciNet  Google Scholar 

  • Dutta J (2005) Generalized derivatives and nonsmooth optimization, a finite dimensional tour. TOP 13(2):185–279

    Article  MathSciNet  Google Scholar 

  • Ghosh D (2017) Newton method to obtain efficient solutions of the optimization problems with interval-valued objective functions. J Appl Math Comput 53:709–731

    Article  MathSciNet  Google Scholar 

  • Ghosh D, Ghosh D, Bhuiya SK, Patra LK (2018) A saddle point characterization of efficient solutions for interval optimization problems. J Appl Math Comput 58(1–2):193–217

    Article  MathSciNet  Google Scholar 

  • Ghosh D (2016) A Newton method for capturing efficient solutions of interval optimization problems. Opsearch 53(3):648–665

    Article  MathSciNet  Google Scholar 

  • Ghosh D, Chakraborty D (2019) An introduction to analytical fuzzy plane geometry, studies in fuzziness and soft computing, vol 381. Springer

  • Ghosh D, Chauhan RS, Mesiar R, Debnath AK (2020) Generalized Hukuhara Gâteaux and Fréchet derivatives of interval-valued functions and their application in optimization with interval-valued functions. Inf Sci 510:317–340

    Article  Google Scholar 

  • Ghosh D, Debnath AK, Pedrycz W (2020) A variable and a fixed ordering of intervals and their application in optimization with interval-valued functions. Int J Approx Reason 121:187–205

    Article  MathSciNet  Google Scholar 

  • Ghosh D, Debnath AK, Chauhan RS, Castillo O (2020) Generalized-Hukuhara-Gradient efficient-direction method to solve optimization problems with interval-valued functions and its application in least squares problems. arXiv preprint arXiv:2011.10462

  • Guo Y, Ye G, Zhao D, Liu W (2019) \(gH\)-Symmetrically derivative of interval-Valued functions and applications in interval-valued optimization. Symmetry 11(10):1203

    Article  Google Scholar 

  • Hiriart-Urruty JB, Lemaréchal C (2012) Fundamentals of convex analysis. Springer Science & Business Media

  • Hukuhara M (1967) Intégration des applications measurables dont la valeur est un compact convexe. Funkcialaj Ekvacioj 10:205–223

    MathSciNet  MATH  Google Scholar 

  • Ishibuchi H, Tanaka H (1990) Multiobjective programming in optimization of the interval objective function. Eur J Oper Res 48(2):219–225

    Article  Google Scholar 

  • Jahn J (2007) Introduction to the theory of nonlinear optimization, 3rd edn. Springer Science and Business Media, New York

    MATH  Google Scholar 

  • Kalani H, Akbarzadeh-T MR, Akbarzadeh A, Kardan I (2016) Interval-valued fuzzy derivatives and solution to interval-valued fuzzy differential equations. J Intell Fuzzy Syst 30(6):3373–3384

    Article  Google Scholar 

  • Lupulescu V (2013) Hukuhara differentiability of interval-valued functions and interval differential equations on time scales. Inf Sci 248:50–67

    Article  MathSciNet  Google Scholar 

  • Lupulescu V (2015) Fractional calculus for interval-valued functions. Fuzzy Sets Syst 265:63–85

    Article  MathSciNet  Google Scholar 

  • Markov S (1979) Calculus for interval functions of a real variable. Computing 22(4):325–337

    Article  MathSciNet  Google Scholar 

  • Moore RE (1966) Interval analysis. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Moore RE (1987) Method and applications of interval analysis, Society for Industrial and Applied Mathematics

  • Ramík J, Vlach M (2002) Generalized concavity in optimization and decision making, vol 305. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Schirotzek W (2007) Nonsmooth analysis. Universitex, Springer Science & Business Media

  • Sengupta A, Pal TK, Chakraborty D (2001) Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming. Fuzzy Sets Syst 119(1):129–138

    Article  Google Scholar 

  • Stefanini L (2008) A generalization of Hukuhara difference. In Soft methods for handling variability and imprecision, advances in soft computing, pp 203–210

  • Stefanini L, Bede B (2009) Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal 71:1311–1328

    Article  MathSciNet  Google Scholar 

  • Stefanini L, Bede B (2014) Generalized fuzzy differentiability with LU-parametric representation. Fuzzy Sets Syst 257:184–203

    Article  MathSciNet  Google Scholar 

  • Stefanini L, Arana-Jiménez M (2019) Karush–Kuhn–Tucker conditions for interval and fuzzy optimization in several variables under total and directional generalized differentiability. Fuzzy Sets Syst 362:1–34

    Article  MathSciNet  Google Scholar 

  • Van Hoa N (2015) The initial value problem for interval-valued second-order differential equations under generalized \(H\)-differentiability. Inf Sci 311:119–148

    Article  MathSciNet  Google Scholar 

  • Wu HC (2007) The Karush–Kuhn–Tucker optimality conditions in an optimization problem with interval-valued objective function. Eur J Oper Res 176:46–59

    Article  MathSciNet  Google Scholar 

  • Wu HC (2008) On interval-valued non-linear programming problems. J Math Anal Appl 338(1):299–316

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We extend sincere thanks to the reviewers and editors for their valuable comments to improve the article. The first author is thankful for a research scholarship awarded by the University Grants Commission, Government of India.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and analysis. Material preparation and analysis were performed by Ram Surat Chauhan, Debdas Ghosh, Jaroslav Ramík, and Amit Kumar Debnath. The first draft of the manuscript was written by Ram Surat Chauhan, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Debdas Ghosh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Proof of Lemma 1

Proof

Let \(\mathbf{Z} =[\underline{z},~\overline{z}]\) and \(a, b \in {\mathbb {R}}\).

  1. (i)

    If \(\mathbf{Z} \succeq \mathbf{0} \), then

    $$\begin{aligned} \underline{z}&\ge 0~\text {and}~\overline{z}\ge 0\\&\quad \implies |a |\underline{z}+|b |\underline{z} \ge |a+b |\underline{z}~\text {and}~|a |\overline{z}+|b |\overline{z} \ge |a+b |\overline{z}\\&\quad \implies |a+b |\odot \mathbf{Z} \preceq |a |\odot \mathbf{Z} \oplus |b |\odot \mathbf{Z} . \end{aligned}$$
  2. (ii)

    If \(\mathbf{Z} \preceq \mathbf{0} \), then

    $$\begin{aligned}&\underline{z}\le 0~\text {and}~\overline{z}\le 0\\&\quad \implies |a |\underline{z}+|b |\underline{z} \le |a+b |\underline{z}~\text {and}~|a |\overline{z}+|b |\overline{z} \le |a+b |\overline{z}\\&\quad \implies |a+b |\odot \mathbf{Z} \succeq |a |\odot \mathbf{Z} \oplus |b |\odot \mathbf{Z} . \end{aligned}$$
  3. (iii)

    If \(\mathbf{Z} \nprec \mathbf{0} \), then

    $$\begin{aligned} \overline{z}&\ge 0 \implies |a |\overline{z}+|b |\overline{z} \ge |a+b |\overline{z}\\&\quad \implies |a+b |\odot \mathbf{Z} \nsucc |a |\odot \mathbf{Z} \oplus |b |\odot \mathbf{Z} . \end{aligned}$$

\(\square \)

Appendix B Proof of Lemma 2

Proof

Let \(\mathbf{A} = [\underline{a}, \overline{a}], ~\mathbf{B} = [\underline{b}, \overline{b}],~\mathbf{C} = [\underline{c}, \overline{c}]\) and \(\mathbf{D} = [\underline{d}, \overline{d}]\).

  1. (i)

    We have the following four possible cases.

    • Case 1. Let \(\overline{a}-\overline{c}\ge \underline{a}-\underline{c}\) and \(\overline{c}-\overline{b}\ge \underline{c}-\underline{b}\). Then, \(\overline{a}-\overline{b}\ge \underline{a}-\underline{b}\) and

      $$\begin{aligned} (\mathbf{A} \ominus _{gH}{} \mathbf{C} )\oplus (\mathbf{C} \ominus _{gH}{} \mathbf{B} )= & {} [\underline{a}-\underline{c}, \overline{a}-\overline{c}]\oplus [\underline{c}-\underline{b},\overline{c}-\overline{b}]\\= & {} [\underline{a}-\underline{b},\overline{a}-\overline{b}]=\mathbf{A} \ominus _{gH}{} \mathbf{B} . \end{aligned}$$
    • Case 2. Let \(\overline{a}-\overline{c}\le \underline{a}-\underline{c}\) and \(\overline{c}-\overline{b}\le \underline{c}-\underline{b}\). Therefore, \(\overline{a}-\overline{b}\le \underline{a}-\underline{b}\) and

      $$\begin{aligned}&(\mathbf{A} \ominus _{gH}{} \mathbf{C} )\oplus (\mathbf{C} \ominus _{gH}{} \mathbf{B} )\\&\quad = [\overline{a}-\overline{c}, \underline{a}-\underline{c}]\oplus [\overline{c}-\overline{b},\underline{c}-\underline{b}]\\&\quad =[\overline{a}-\overline{b},\underline{a}-\underline{b}]=\mathbf{A} \ominus _{gH}{} \mathbf{B} . \end{aligned}$$
    • Case 3. Let \(\overline{a}-\overline{c}<\underline{a}-\underline{c}\) and \(\overline{c}-\overline{b}>\underline{c}-\underline{b}\). Therefore,

      $$\begin{aligned}&(\mathbf{A} \ominus _{gH}{} \mathbf{C} )\oplus (\mathbf{C} \ominus _{gH}{} \mathbf{B} )\\&\quad = [\overline{a}-\overline{c}, \underline{a}-\underline{c}]\oplus [\underline{c}-\underline{b},\overline{c}-\overline{b}]\\&\quad =[\overline{a}-\overline{c}+\underline{c}-\underline{b}, \underline{a}-\underline{c}+\overline{c}-\overline{b}]. \end{aligned}$$

      If possible, let

      $$\begin{aligned} (\mathbf{A} \ominus _{gH}{} \mathbf{C} )\oplus (\mathbf{C} \ominus _{gH}{} \mathbf{B} ) \prec \mathbf{A} \ominus _{gH}{} \mathbf{B} .\nonumber \\ \end{aligned}$$
      (Appendix B.1)

      If \(\overline{a}-\overline{b}\ge \underline{a}-\underline{b}\), then from (Appendix B.1) we get

      $$\begin{aligned}&[\overline{a}-\overline{c}+\underline{c}-\underline{b}, \underline{a}-\underline{c}+\overline{c}-\overline{b}] \prec [\underline{a}-\underline{b},\overline{a}-\overline{b}]\\&\quad \Longrightarrow \underline{a}-\underline{c}+\overline{c}-\overline{b} \le \overline{a}-\overline{b}\\&\quad \Longrightarrow \underline{a}-\underline{c} \le \overline{a}-\overline{c},~\text { which is an impossibility}. \end{aligned}$$

      Further, if \(\overline{a}-\overline{b}\le \underline{a}-\underline{b}\), then from (Appendix B.1), we have

      $$\begin{aligned}&[\overline{a}-\overline{c}+\underline{c}-\underline{b}, \underline{a}-\underline{c}+\overline{c}-\overline{b}] \prec [\overline{a}-\overline{b},\underline{a}-\underline{b}]\\&\quad \Longrightarrow \underline{a}-\underline{c}+\overline{c}-\overline{b} \le \underline{a}-\underline{b}\\&\quad \Longrightarrow \overline{c}-\overline{b} \le \underline{c}-\underline{b},~\text {which is an impossibility}. \end{aligned}$$

      Thus, (Appendix B.1) is not true.

    • Case 4. Let \(\overline{a}-\overline{c}>\underline{a}-\underline{c}\) and \(\overline{c}-\overline{b}<\underline{c}-\underline{b}\). Proceeding as in Case 3 of (i) we can prove that (Appendix B.1) is not true. Hence,

    $$\begin{aligned} (\mathbf{A} \ominus _{gH}{} \mathbf{C} )\oplus (\mathbf{C} \ominus _{gH}{} \mathbf{B} ) \nprec \mathbf{A} \ominus _{gH}{} \mathbf{B} . \end{aligned}$$
  2. (ii)

    As \({\Vert \mathbf{B} \ominus _{gH} \mathbf{A} \Vert }_{I({\mathbb {R}})} = \max \{|\underline{b}-\underline{a}|, |\overline{b}-\overline{a}|\},\) we break the proof in two cases.

    • Case 1. If \((L = )~ {\Vert \mathbf{B} \ominus _{gH} \mathbf{A} \Vert }_{I({\mathbb {R}})} = |\underline{b}-\underline{a}|\), then

      $$\begin{aligned} |\underline{b}-\underline{a}| \ge |\overline{b}-\overline{a}|&\implies |\underline{b}-\underline{a}| \ge \overline{b}-\overline{a} \nonumber \\&\implies \overline{b} \le \overline{a}+L.\nonumber \\ \end{aligned}$$
      (Appendix B.2)

      Since \( \underline{b}-\underline{a} \le |\underline{b}-\underline{a}|\), then

      $$\begin{aligned} \underline{b} \le \underline{a}+L. \end{aligned}$$
      (Appendix B.3)

      From (Appendix B.2) and (Appendix B.3), we have \(\mathbf{B} \preceq \mathbf{A} \oplus [L, L].\)

    • Case 2. If \((L = )~ {\Vert \mathbf{B} \ominus _{gH} \mathbf{A} \Vert }_{I({\mathbb {R}})} = |\overline{b}-\overline{a}|\), then

      $$\begin{aligned}&|\underline{b}-\underline{a}| \le |\overline{b}-\overline{a}|\nonumber \\&\quad \implies \underline{b}-\underline{a} \le |\overline{b}-\overline{a}| \implies \underline{b} \le \underline{a}+L. \nonumber \\ \end{aligned}$$
      (Appendix B.4)

      Since \( \overline{b}-\overline{a} \le |\overline{b}-\overline{a}|\),

      $$\begin{aligned} \overline{b} \le \overline{a}+L. \end{aligned}$$
      (Appendix B.5)

      From (Appendix B.4) and (Appendix B.5), we obtain \(\mathbf{B} \preceq \mathbf{A} \oplus [L, L], ~\text {where}~ L=\Vert \mathbf{B} \ominus _{gH}{} \mathbf{A} \Vert _{I({\mathbb {R}})}.\)

  3. (iii)

    If possible, let there exist \(\mathbf{A} ,~\mathbf{B} ,~\mathbf{C} \) and \(\mathbf{D} \) in \(I({\mathbb {R}})\) such that

    $$\begin{aligned}&{\Vert (\mathbf{A} \ominus _{gH}{} \mathbf{B} )\ominus _{gH} (\mathbf{C} \ominus _{gH}{} \mathbf{D} ) \Vert }_{I({\mathbb {R}})}\nonumber \\&\quad > \Vert \mathbf{A} \ominus _{gH}{} \mathbf{C} \Vert _{I({\mathbb {R}})} + \Vert \mathbf{B} \ominus _{gH}{} \mathbf{D} \Vert _{I({\mathbb {R}})}.\nonumber \\ \end{aligned}$$
    (Appendix B.6)

    According to the definition of gH-difference of two intervals,

    $$\begin{aligned}&\text {either}~~ \mathbf{A} \ominus _{gH} \mathbf{B} = [\underline{a}-\underline{b}, \overline{a}-\overline{b}]\\&\quad ~~\text {or}~~ \mathbf{A} \ominus _{gH} \mathbf{B} = [\overline{a}-\overline{b}, \underline{a}-\underline{b}], \\&\quad \text {either}~~ \mathbf{C} \ominus _{gH} \mathbf{D} = [\underline{c}-\underline{d}, \overline{c}-\overline{d}]~~\\&\quad \text {or}~~\mathbf{C} \ominus _{gH} \mathbf{D} = [\overline{c}-\overline{d}, \underline{c}-\underline{d}], \\&\quad \text {either}~~ \mathbf{A} \ominus _{gH} \mathbf{C} = [\underline{a}-\underline{c}, \overline{a}-\overline{c}]\\&\quad \text {or}~~ \mathbf{A} \ominus _{gH} \mathbf{C} = [\overline{a}-\overline{c}, \underline{a}-\underline{c}], \end{aligned}$$

    and

    $$\begin{aligned}&\text {either}~~ \mathbf{B} \ominus _{gH} \mathbf{D} = [\underline{b}-\underline{d}, \overline{b}-\overline{d}]~~\text {or}~~\mathbf{B} \ominus _{gH} \mathbf{D} \\&\quad = [\overline{b}-\overline{d}, \underline{b}-\underline{d}]. \end{aligned}$$

    Then, one of the following holds true:

    1. (a)

      \((\mathbf{A} \ominus _{gH} \mathbf{B} )\ominus _{gH}(\mathbf{C} \ominus _{gH} \mathbf{D} )= [\underline{a}-\underline{b}-\underline{c}+\underline{d},~ \overline{a}-\overline{b}-\overline{c}+\overline{d} ]\)

    2. (b)

      \((\mathbf{A} \ominus _{gH} \mathbf{B} )\ominus _{gH}(\mathbf{C} \ominus _{gH} \mathbf{D} )= [\underline{a}-\underline{b}-\overline{c}+\overline{d},~ \overline{a}-\overline{b}-\underline{c}+\underline{d} ]\)

    3. (c)

      \((\mathbf{A} \ominus _{gH} \mathbf{B} )\ominus _{gH}(\mathbf{C} \ominus _{gH} \mathbf{D} )= [ \overline{a}-\overline{b}-\overline{c}+\overline{d},~\underline{a}-\underline{b}-\underline{c}+\underline{d} ]\)

    4. (d)

      \((\mathbf{A} \ominus _{gH} \mathbf{B} )\ominus _{gH}(\mathbf{C} \ominus _{gH} \mathbf{D} )= [\overline{a}-\overline{b}-\underline{c}+\underline{d},~ \underline{a}-\underline{b}-\overline{c}+\overline{d} ]\).

    • Case 1. Let \((\mathbf{A} \ominus _{gH} \mathbf{B} )\ominus _{gH}(\mathbf{C} \ominus _{gH} \mathbf{D} )= [\underline{a}-\underline{b}-\underline{c}+\underline{d},~ \overline{a}-\overline{b}-\overline{c}+\overline{d} ]\).

      1. (a)

        If \({\Vert (\mathbf{A} \ominus _{gH}{} \mathbf{B} )\ominus _{gH} (\mathbf{C} \ominus _{gH}{} \mathbf{D} ) \Vert }_{I({\mathbb {R}})} = |\underline{a}-\underline{b}-\underline{c}+\underline{d} |\), then from equation (Appendix B.6), we have

        $$\begin{aligned} |\underline{a}-\underline{b}-\underline{c}+\underline{d} |> & {} |\underline{a}-\underline{c}|+ |\underline{b}-\underline{d}|\\> & {} |\underline{a}-\underline{b}-\underline{c}+\underline{d} |, \end{aligned}$$

        which is impossible.

      2. (b)

        If \({\Vert (\mathbf{A} \ominus _{gH}{} \mathbf{B} )\ominus _{gH} (\mathbf{C} \ominus _{gH}{} \mathbf{D} ) \Vert }_{I({\mathbb {R}})} = |\overline{a}-\overline{b}-\overline{c}+\overline{d} |\), then from equation (Appendix B.6), we have

        $$\begin{aligned} |\overline{a}-\overline{b}-\overline{c}+\overline{d} |> & {} |\overline{a}-\overline{c}|+ |\overline{b}-\overline{d}|\\> & {} |\overline{a}-\overline{b}-\overline{c}+\overline{d} |, \end{aligned}$$

        which is again impossible.

    • Case 2. Let \((\mathbf{A} \ominus _{gH} \mathbf{B} )\ominus _{gH}(\mathbf{C} \ominus _{gH} \mathbf{D} )= [\overline{a}-\overline{b}-\overline{c}+\overline{d},~ \underline{a}-\underline{b}-\underline{c}+\underline{d} ]\). For this case, two subcases are similar to the Case 1 of (iii) will lead to impossibilities.

    • Case 3. Let \((\mathbf{A} \ominus _{gH} \mathbf{B} )\ominus _{gH}(\mathbf{C} \ominus _{gH} \mathbf{D} )= [\underline{a}-\underline{b}-\overline{c}+\overline{d},~ \overline{a}-\overline{b}-\underline{c}+\underline{d} ]\). Then,

      $$\begin{aligned} \underline{a}-\underline{b} \le \overline{a}-\overline{b}~\text {and}~\overline{c}-\overline{d} \le \underline{c}-\underline{d}.\nonumber \\ \end{aligned}$$
      (Appendix B.7)
      1. (a)

        If \({\Vert (\mathbf{A} \ominus _{gH}{} \mathbf{B} )\ominus _{gH} (\mathbf{C} \ominus _{gH}{} \mathbf{D} ) \Vert }_{I({\mathbb {R}})} = |\overline{a}-\overline{b}-\underline{c}+\underline{d} |\), then \(\overline{a}-\overline{b}-\underline{c}+\underline{d} \ge 0.\) From equation (Appendix B.6), we have

        $$\begin{aligned}&|\overline{a}-\overline{b}-\underline{c}+\underline{d} |> |\overline{a}-\overline{c}|+ |\overline{b}-\overline{d}|\\&\quad \implies \overline{c}-\overline{d} > \underline{c}-\underline{d}, \end{aligned}$$

        which is contradictory to (Appendix B.7).

      2. (b)

        If \({\Vert (\mathbf{A} \ominus _{gH}{} \mathbf{B} )\ominus _{gH} (\mathbf{C} \ominus _{gH}{} \mathbf{D} ) \Vert }_{I({\mathbb {R}})} = |\underline{a}-\underline{b}-\overline{c}+\overline{d} |\), then \(\underline{a}-\underline{b}-\overline{c}+\overline{d} < 0.\) From equation (Appendix B.6), we have

        $$\begin{aligned}&-(\underline{a}-\underline{b}-\overline{c}+\overline{d}) = |\underline{a}-\underline{b}-\overline{c}+\overline{d} |> |\underline{a}\\&\quad -\underline{c}|+ |\underline{b}-\underline{d}|\implies \overline{c}-\overline{d} > \underline{c}-\underline{d}, \end{aligned}$$

        which is again contradictory to (Appendix B.7).

    • Case 4. Let \((\mathbf{A} \ominus _{gH} \mathbf{B} )\ominus _{gH}(\mathbf{C} \ominus _{gH} \mathbf{D} )= [\overline{a}-\overline{b}-\underline{c}+\underline{d},~\underline{a}-\underline{b}-\overline{c}+\overline{d} ]\). All the two subcases for this case are similar to Case 3 of (iii).

    Hence, (Appendix B.6) is wrong, and thus the result follows.

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, R.S., Ghosh, D., Ramík, J. et al. Generalized Hukuhara-Clarke Derivative of Interval-valued Functions and its Properties. Soft Comput 25, 14629–14643 (2021). https://doi.org/10.1007/s00500-021-06251-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-021-06251-w

Keywords

Navigation